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Eigenvalues and Eigenvectors

Definition 1.1
Let A ∈ Cm×m be a square matrix. A nonzero vector x ∈ Cm is an eigenvector of A, and
λ ∈ C is its corresponding eigenvalue, if

Ax = λx.

The set of all the eiganvalues of matrix A is the spectrum of A denoted by Λ(A).
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Eigenvalue Decomposition

Definition 2.1
An eigenvalue decomposition of a square matrix A, already mentioned in section 5, is a
factorization

A = XΛX−1.

This definition can be rewritten
AX = XΛ, A


x1 · · · xm

 =
x1 · · · xm



λ1

. . .

λm

 .
The jth column of X is an eigenvector of A and the j th entry of A is the corresponding
eigenvalue.

Axj = λj xj
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Characteristic Polynomial

Definition 3.1
The characteristic polynomial of A ∈ Cm×m, denoted by pA of simply p, is the degree m
polynomial defined by

pA(z) = det(zI − A).

Additionly, p is monic, i.e. the cofficient of its degree m term is 1.

Folling theorem has an important consequence. Even if a matrix is real, some of its
eigenvalues may be complex. Physically, this is related to the phenomenon that real
dynarnicd systems can have motions that oscillate as well as grow or decay.
Algorithmically, it means that even if the input to a matrix eigenvalue problem is real, the
output may have to be complex.
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Characteristic Polynomial

Theorem 3.2
λ is an eigenvalue of A if and only if pA(λ) = 0

Proof.
This follows from the definition of an eigenvalue:

λ is an eigenvalue ⇔ there is a nonzero vector x such that λx − Ax = 0

⇔ λI − A is singular
⇔ det(λI − A) = 0

�
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Algebraic Multiplicity

By fundamental theorem of algebra, we can write pA in the form

pA(z) = (z − λ1)(z − λ2) · · · (z − λm)

for some numbers λj ∈ C.
We define the algebraic multiplicity of an eigenvalue λ of A to be its multiplicity as a root of
pA. An eigenvalue is simple if its algebraic multiplicity is 1.

Remark
A number a is a root of a polynomial P if and only if the linear polynomial x − a devides P,
that is another polynomial Q such that P = (x − a)Q.{

a is called a multiple root of P : (x − a)2 devides P
a is called a simple root of P : otherwise

6 / 25



7

Algebraic Multiplicity

Theorem 4.1
If A ∈ Cm×m, then A has m eigenvalues, counted with algebric multiplicity. Inparticular, if the
roots of pA are simple, then A has m distinct eigenvalues.

Note
Every matrix has at least one eigenvalue.
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Geometric Multiplicity

If λ is an eigenvalue of A, let us denote the corresponding eigenspace by Eλ. An
eigenspace Eλ is an example of an invariant subspace of A; that is AEλ ⊆ Eλ.
The dimension of Eλ can be interpreted as the maximum number of linear independent
eigenvectors that can be found, all with the same eigenvalue λ. The number is known as
the geometric multiplicity of λ. The geometric multiplicity can also ve described as the
dimension of the nullspace of A − λI, since that nullspace is again Eλ.
Suppose λ is an eigenvalue of A.

1. Eigenvectors (geometric) There are nonzero solutions to Ax = λx.
2. Eigenvalues (algebraic) The determinant of A − λI is zero.

And we want to know its multiplicity.
1. (Geometric Multiplicity = GM) Count the independent eigenvectors for λ. Look at the

dimension of the nullspace of A − λI.
2. (Algebraic Multiplicity = AM) Count the repetitions of λ among the eigenvalues.

Look at the roots of det(A − λI) = 0.
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Similarity Transformations

If X ∈ Cm×m is nonsingular, then the map A→ X−1AX is called a similarity transformation
of A.

Definition 6.1
We say two matrices A and B are similar if there is a similarity transformation relating one
to the other, i.e.

there exists a nonsingular X ∈ Cm×m such that B = X−1AX .

There are many properties about similar matrices A and X−1AX.
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Similarity Transformations

Theorem 6.2
If X is nonsingular, then A and X−1AX have the same characteristic polynomial,
eigenvalues, and algebraic and geometric multiplicies.

Proof.
The characteristic polynomials match is a straightforward computation:

pX−1AX (z) = det(zI − X−1AX) = det(X−1(zI − A)X)

= det(X−1)det(zI − A)det(X) = det(zI − A) = pA(z).

�
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Similarity Transformations

We can now relate geometric multiplicity to algebraic multiplicity.

Theorem 6.3
The algebruic multiplicity of an eigenvalue λ is at least as great as its geometric multiplicity.

Proof.
Let x1, . . . ,xr be linearly independent eigenvectors associated to λ̂, so λ̂ has geometric
multiplicity r. Let xr+1, . . . ,xn be basis for Rn.
And let X be the matrix which columns xk .
Consider AX.

AX =

| |

λ̂x1 · · · λ̂xr · · ·

| |

 ⇒ S−1AS =
[
λ̂I B
0 C

]
where B : r × n matrix, C : (n − r) × (n − r) matrix.

11 / 25



12

Similarity Transformations

Proof.
By theorem 6.2, the characteristic polynomial of A and S−1AS are the same.
It is easy to see that the characteristic polynomial of S−1AS has a factor of at least
(λ̂ − λ)r .(∵ determinant of block matrices)
∴ GM ≤ AM. �
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Defective Eigenvalues and Matrices

Example 7.1
Consider the matrices

A =

2

2
2

 , B =

2 1

2 1
2

 .
Both A and B have same characteristic polynomial (z − 3)3, so there is a single eigenvalue
λ = 2 of algebraic multiplicity 3. In the case of A, we can choose three independent
eigenvectors, e1, e2, e3. So the geometric multiplicity is also 3. But for B, we can find only a
single independent eigenvector, so the geometric multiplicity of the eigenvalue is only 1.

An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a defective
eigenvalue. A matrix that has one or more defective eigenvalues is a defective matrix.
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Diagonalisability

Theorem 8.1
An m × m matrix A is nondefective if and only if it has an eigenvalue decomposition
A = X−1ΛX.

Proof.
(⇐) Given an eigenvalue decomposition A = X−1ΛX, Λ is similar to A. Since Λ is a
diagonal matrix, it is nondefective, and thus the same holds for A.
(⇒) A nondefective matrix must have m linearly independent eigenvectors, because
eigenvectors with different eigenvalues must be linear independent, and each eigenvalue
cam contribute as many linearly independent eigenvectors as its multiplicity. If these m
independent eigenvectors are formed into the columns of a matrix X, then X is
nonsingular and we have A = X−1ΛX. �

In view of this result, another term for nondefective is daagonalzzable.
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Diagonalisability

Question
Does a diagonalizable matrix A in some sense “behave like” its diagonal equivalent Λ?

Answer
The answer depends on what aspect of behavior one measures and on the condition
number of X, the matrix of eigenvectors.
If X is highly ill-conditioned, then a great deal of information may be discarded in passing
from A to Λ.(“A Note of Caution: Nonnormality” in Lecture 34.)
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Determinant and Trace

Definition 9.1
The trace of A ∈ Cm×m is the sum of its diagonal elements:

tr(A) =
m∑
j=1

aj j .

Both the trace and the determinant are related simply to the eigenvalues.
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Determinant and Trace

Theorem 9.2
The determinant det(A) and the trace tr(A) are equar to the product and the sum of the
eigenvalues of A, respectively, counted with algebraic multiplicity:

det(A) =
m∏
j=1

λj, tr(A) =
m∑
j=1

λj .

Proof.

det(A) = (−1)m det(−A) = (−1)mpA(0) =
m∏
j=1

λj .

By definition of characteristic polynomial, the cofficient of the zm−1 term of pA is the
negative of the sum of the diagonal elements of A, or −tr(A).

And also pA(z) = (z − λ1) · · · (z − λm), so tr(A) =
m∑
j=1

λj . �
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Unitary Diagonalization

If we can choose m orthogonal eigenvector fo m × m matrix A, A is unitarily diagonalizable:

there exists a unitary matrix Q such that A = QΛQ∗

Theorem 10.1
A hermitian matrix is unitarily diagonalizable, and its eigenvalues are real.

Theorem 10.2
A matrix is unitarily diagonalizable, if and only if it is normal.
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Unitary Diagonalization

There is some equivalent definition of normal matrix.
1. A is normal.
2. A is diagonalizable by a unitary matrix.
3. There exists a set of eigenvector of A which forms an orthonormal basis for Cm.
4. ‖Ax‖ = ‖A∗x‖ for every x.
5. The Frobenius norm of A can be computed by the eigenvalues of A :

tr(A∗A) =
∑

j |λj |
2.

6. The Hermitian part 1/2(A + A∗) and skew-Hermitian part 1/2(A − A∗) of A commute.
7. A∗ = AU for some unitary matrix U.
8. U and P comute, where we have the polar decomposition A = UP with a unitary

matrix U and some positive semidefinite matrix P.
9. σj = |λj | for all j.
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Schur Factorization

Definition 11.1
A Schur factorization of a matrix A is a factorization

A = QTQ∗,

where Q is unitary and T is upper-triangular.

Note
A and T are similar.

20 / 25



21

Schur Factorization

Theorem 11.2
Every square matrix A has a Schur factorization.

Proof.
We will show that there exists triangular matrix T such that T = UTU∗ for some unitary
marix U for all A.
We use mathematical induction on size of A.
(n = 1) trivial.
Assume that n > 1, and the result holds for all matrices of size less than n. n. Since every
complex matrix has an eigenvalue, choose an eigenvalue λ of A and an associated
eigenvector v = (v1, . . . , vn).
Let x = v1v

‖v1v ‖
, and set u = x − e1.
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Schur Factorization

Proof.
And we will put Q in some cases.{

Q : Householder matrix associated with u (if x , e1)
Q = I (if x = e1)

Then x = Qe1, it means that the first column of Q is x. We already know that every
householder matrix is unitary and hermitian. So x∗ is first row of Q∗. Since Q−1 = Q∗ = Q,

Q =
[
x|V

]
=

[
x∗

V∗

]
. Therefore,

QAQ = QA
[
x|V

]
= Q

[
λx|AV

]
=

[
λe1 |

[
x∗

V∗

]
AV

]
=

[
λ x∗AV
0 V∗AV

]
.
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Schur Factorization

Proof.
The size of V∗AV is (n − 1) × (n − 1), so we can apply the induction, there exists unitary
matrix R such that Tn−1 = R∗(V∗AV)R is upper triangular matrix. Let

U = Q
[
1 0
0 R

]
,

then

U∗U =
[
1 0
0 R∗

]
Q∗Q

[
1 0
0 R

]
= I .

So U is unitary.
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Schur Factorization

Proof.

T = U∗AU =
[
1 0
0 R∗

]
QAQ

[
1 0
0 R

]
=

[
1 0
0 R∗

] [
λ x∗AV
0 V∗AV

] [
1 0
0 R

]
=

[
1 0
0 R∗

] [
λ x∗AV R
0 V∗AV R

]
=

[
λ x∗AV R
0 R∗V∗AV R

]
=

[
λ x∗AV R
0 Tn−1

]
Hence, T is triangular matrix.
∴ A = UTU∗ �
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Eigenvalue-Revealing Factorizations

We cam summarize this Lecture as follows.

I A diagonalization A = X AX−1 exists if and only if A is nondefective.
I A unitary diagonalization A = QAQ∗ exists if and only if A is normal.
I A unitary triangularization (Schur factorization) A = QTQ∗ always exists.

To compute eigenvalues, we shall construct one of these factorizations. In general, this will
be the Schur factorization, since this applies without restriction to all matrices. Moreover,
since unitary transformations are involved, the algorithms that result tend to be numerically
stable. If A is normal, then the Schur form comes out diagonal, and in particular, if A is
hermitian, then we can take advantage of this symmetry throughout the computation and
reduce A to diagonal form with half as much work or less than is required for general A.
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Thank you!
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