Linear Algebra and Learning from Data IV. 10 Distance Matrices

Taehyeong Kim
th_kim@pusan.ac.kr

December 30, 2020

Content

Introduction

Positions X from Distances D

Centering X or Rotating to Match Anchor Points

Problems

Introduction

Suppose n points are at positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ in d-dimensional space. Distance matrix D is $n \times n$ matrix and $D_{i j}=\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{2} \mathrm{It}$ is easy to see that D is symmetric.

Example 1.1

Let $\mathbf{x}_{1}=(1,2,3), \mathbf{x}_{2}=(3,2,1), \mathbf{x}_{3}=(1,1,2)$, then the distance matrix D is

$$
D=\left[\begin{array}{lll}
0 & 8 & 2 \\
8 & 0 & 6 \\
2 & 6 & 0
\end{array}\right]
$$

Introduction

Question

Can we recover the positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ from the Euclidean distance matrix D ?
Answer: No.
Example 1.2
Let $\mathrm{x}_{1}=(1,2,3), \mathrm{x}_{2}=(3,2,1), \mathrm{x}_{3}=(1,1,2)$ and $\tilde{\mathbf{x}}_{1}=(0,1,2), \tilde{\mathbf{x}}_{2}=(2,1,0), \tilde{\mathbf{x}}_{3}=(0,0,1)$, then the distance matrix D and \tilde{D} are same

$$
\tilde{D}=D=\left[\begin{array}{lll}
0 & 8 & 2 \\
8 & 0 & 6 \\
2 & 6 & 0
\end{array}\right]
$$

Introduction

Another Question

Are there always positions $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ consistent with the distance matrix D ？

Answer：Yes！

Application of distance matrix

1．Wireless sensor networks
2．Shapes of molecules
3．Machine learning

Positions X from Distances D

$$
\begin{array}{r}
\text { Let } X=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathrm{x}_{1} & \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right] \text {, then } X^{T} X=\left[\begin{array}{ccc}
- & \mathbf{x}_{1}^{T} & - \\
& \vdots & \\
- & \mathbf{x}_{n}^{T} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
\mathrm{x}_{1} & \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right], \\
\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{2}=\left(\mathbf{x}_{i}-\mathrm{x}_{j}\right)^{T}\left(\mathrm{x}_{i}-\mathrm{x}_{j}\right)=\mathrm{x}_{i}^{T} \mathrm{x}_{i}-\mathrm{x}_{i}^{T} \mathrm{x}_{j}-\mathbf{x}_{j}^{T} \mathrm{x}_{i}+\mathrm{x}_{j}^{T} \mathbf{x}_{j} \tag{1}
\end{array}
$$

We can connect (1) and $X^{T} X$.

- Let $G=X^{T} X$, then the first term and last term $\mathrm{x}_{k}^{T} \mathrm{x}_{k}$ are in $\operatorname{diag}(G)$.
- And middle terms of (1) $-\mathrm{x}_{i}^{T} \mathrm{x}_{j}-\mathrm{x}_{j}^{T} \mathrm{x}_{i}=-2 \mathrm{x}_{i}^{T} \mathrm{x}_{j}$ is in $-2 G$.

Then by using columns vector of n ones 1 ,

$$
\begin{equation*}
D=1 \operatorname{diag}(G)^{T}-2 G+\operatorname{diag}(G) 1^{T} \tag{2}
\end{equation*}
$$

Positions X from Distances D

Example 2.1

Let $\mathrm{x}_{1}=(1,2,3), \mathbf{x}_{2}=(3,2,1), \mathbf{x}_{3}=(1,1,2)$, then $X=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 1 & 2\end{array}\right], G=X^{T} X=\left[\begin{array}{ccc}14 & 10 & 9 \\ 10 & 14 & 7 \\ 9 & 7 & 6\end{array}\right]$.

$$
\begin{array}{lll}
\mathbf{x}_{1}^{T} \mathbf{x}_{1}=14, & \mathbf{x}_{2}^{T} \mathrm{x}_{2}=14, & \mathbf{x}_{3}^{T} \mathrm{x}_{3}=6 \\
\mathbf{x}_{1}^{T} \mathbf{x}_{2}=10, & \mathbf{x}_{1}^{T} \mathrm{x}_{3}=9, & \mathbf{x}_{2}^{T} \mathrm{x}_{3}=7
\end{array}
$$

$$
1 \operatorname{diag}(G)^{T}-2 G+\operatorname{diag}(G) \mathbf{1}^{T}=\left[\begin{array}{lll}
0 & 8 & 2 \\
8 & 0 & 6 \\
2 & 6 & 0
\end{array}\right]=D
$$

Positions X from Distances D

Our problem is to recover G from D.

If G is positive semidefinite, we can find X with $X^{T} X=G$.
Since $1 \operatorname{diag}(G)^{T}$ and $\operatorname{diag}(G) 1^{T}$ terms in (2) are rank 1 matrices, D has rank $d+1$ or $d+2$.
Now we solve equation (2) for G.

1. Place first point at the origin: $\mathrm{x}_{1}=\mathbf{0}$.
2. Then every $\left\|\mathrm{x}_{i}-\mathrm{x}_{1}\right\|=\left\|\mathrm{x}_{i}\right\|$.
3. Then the first column \mathbf{d}_{1} of D must be exactly the same as

$$
\begin{align*}
& \operatorname{diag}\left(X^{T} X\right)=\operatorname{diag}(G)=\left(\left\|\mathbf{x}_{1}\right\|^{2},\left\|\mathbf{x}_{2}\right\|^{2}, \ldots,\left\|\mathbf{x}_{n}\right\|^{2}\right) \\
& \qquad \operatorname{diag}(G)=\mathbf{d}_{1} \quad \text { and } \quad G=-\frac{1}{2}\left(D-\mathbf{1 d}_{1}^{T}-\mathbf{d}_{1} \mathbf{1}^{T}\right) . \tag{3}
\end{align*}
$$

Positions X from Distances D

Theorem 2.2

A symmetric matrix D with zero diagonal is a Euclidian distance matrix if and only is $\mathrm{x}^{T} D \mathrm{x} \leq 0$ for every vector with $\sum x_{i}=0$ (so $1^{T} \mathrm{x}=0$).

We can solve $X^{T} X=G$ by several factorizations.

- Eigenvalue decomposition
- If $G=Q \Lambda Q^{T}$, then $X=\sqrt{\Lambda} Q^{T}$.
- Cholesky factorization
- If $G=U^{T} U$, then $X=U$.

Centering X or Rotating to Match Anchor Points

What is centering?

Centering : Often we might prefer to place the centroid of the x 'x at the origin. The centroid of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ is just the average of those vectors:

$$
\begin{equation*}
\text { Cdntroid } \quad c=\frac{1}{n}\left(\mathbf{x}_{1}+\cdots+\mathbf{x}_{n}\right)=\frac{1}{n} X \mathbf{1} . \tag{4}
\end{equation*}
$$

Just miltiply any position matrix X by the matrix $I-\frac{1}{n} 11^{T}$ to put the centroid at 0 .

Centering X or Rotating to Match Anchor Points

Example 3.1

Let $X=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]$ ，then $X\left(I-\frac{1}{n} 11^{T}\right)=\left[\begin{array}{ccc}-\frac{2}{3} & \frac{4}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ 1 & -1 & 0\end{array}\right]$ ，average of columns is $\mathbf{0}$（origin）．

Centering X or Rotating to Match Anchor Points

What is anchor point?

Centering X or Rotating to Match Anchor Points

The best orthogonal matrix Q solves the Procrustes problem in Section IV.9.

Orthogonal Procrustes problem

$$
\begin{equation*}
R=\arg \min _{Q}\|X-Y Q\|_{F}^{2} \quad \text { subject to } \quad Q^{T} Q=I \tag{5}
\end{equation*}
$$

(5) can be equivalent to find an orthogonal matrix R which most closely maps X to Y.

Problems

Problem 1

$\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}$ and $\left\|\mathrm{x}_{2}-\mathrm{x}_{3}\right\|^{2}$ and $\left\|\mathrm{x}_{1}-\mathrm{x}_{3}\right\|^{2}$ will violate the triangle inequality. Construct G and comfirm that it is not positive semidefinite : no solution X to $G=X^{T} X$.

Problems

Problem 2

$\left\|x_{1}-x_{2}\right\|^{2}=9$ and $\left\|x_{2}-x_{3}\right\|^{2}=16$ and $\left\|x_{1}-x_{3}\right\|^{2}=25$ do satisfy the triangle inequality $3+4>5$. Construct G and find points $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ that match these distances.

Problems

Problems

Cu
 를

Problem 3

If all $\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{2}=1$ for $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$, find G and then X. The points lie in \mathbb{R}^{d} for which dimension d ?

Problems

Thank you!

