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Who am I?

Who am I?

I am interested in...

Numerical linear algebra

Matrix analysis

Applied mathematics
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Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

“All models are wrong, but some are useful” - George E. P. Box
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Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

There are many matrix factorizations(decompositions).

LU decomposition : 𝐴 = 𝐿𝑈

Cholesky decomposition : 𝐴 = 𝑈𝑈∗

QR decomposition 𝐴 = 𝑄𝑅

Eigenvalue decomposition : 𝐴 = 𝑉𝐷𝑉−1

Singular value decomposition : 𝐴 = 𝑈Σ𝑉∗

CUR decomposition : 𝐴 = 𝐶𝑈𝑅

Each of the factorizations is used in several applications, such as solving
matrix equations, clustering.
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Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

Image data
Hyperspectral data Signal data

Most of data can be expressed as nonnegative matrix!
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Nonnegative Matrix Factorization

Nonnegative Matrix Factorization
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Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

Given a nonnegative matrix 𝑋 ∈ R𝑚×𝑛
+ , a factorization rank 𝑟, and a distance

measure 𝐷 (·, ·) between two matrices, compute two nonnegative matrices
𝑊 ∈ R𝑚×𝑟

+ and 𝐻 ∈ R𝑟×𝑛+ such that 𝐷 (𝑋,𝑊𝐻) is minimized, that is solve

min
𝑊 ∈R𝑚×𝑟

+ ,𝐻 ∈R𝑟×𝑛+
𝐷 (𝑋,𝑊𝐻). (1)

We call an NMF model is an optimization model that requires the choice of

the variables (in the standard NMF model, the factors 𝑊 and 𝐻),

the objective function (such as the standard least squares error
‖𝑋 −𝑊𝐻‖𝐹2 ) with or without regularizers (such as ‖𝐻‖1 to induce sparse
solutions),

constraints on the variables (such as nonnegativity of 𝑊 and 𝐻 in the
standard NMF model, and orthogonality with 𝐻𝐻> = 𝐼 in the ONMF
model).
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Statistical model and maximum likelihood

Statistical model and maximum likelihood

Error measure

Error measure used to evaluate the quality of the approximation, 𝑊𝐻 of 𝑋,
denoted as 𝐷 (𝑋,𝑊𝐻).

Suppose that the entry at position (𝑖, 𝑗) of matrix 𝑋 contains the observations
of a random variable, 𝑋, defined by the parameter (𝑊̂𝐻)𝑖 𝑗

Example

Consider 𝑋 = 𝑊̂𝐻 + 𝑁, where the factor 𝑊̂ ≥ 0 and 𝐻 ≥ 0 are deterministic,
and the noise is i.i.d. Gaussian with mean 0 and standard deviation 𝜎.

𝑋𝑖 𝑗 ∼ N
(
(𝑊̂𝐻)𝑖 𝑗 , 𝜎

)
for all 𝑖, 𝑗 and some 𝜎 > 0.

Thus the probability density function of 𝑋𝑖 𝑗 is

𝑝

(
𝑋𝑖 𝑗 ; (𝑊̂𝐻)𝑖 𝑗 , 𝜎

)
=

1
√
2𝜋𝜎

𝑒
− 1

2𝜎2

(
𝑋𝑖 𝑗−(𝑊̂ 𝐻̂ )𝑖 𝑗

)2
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Statistical model and maximum likelihood

Statistical model and maximum likelihood

Example

Since the noise is assumed to be i.i.d., the likelihood of the sample 𝑋 with
respect to (𝑊̂𝐻)𝑖 𝑗 and 𝜎 is

ℓ(𝑋; 𝑊̂𝐻, 𝜎) =
∏
𝑖, 𝑗

𝑝

(
𝑋𝑖 𝑗 ; (𝑊̂𝐻)𝑖 𝑗 , 𝜎

)
. (2)

Given a sample 𝑋, the unknown parameters, 𝑊̂ , 𝐻, and 𝜎, can be estimated
by solving the optimization problem

max
𝑊 ≥0,𝐻 ≥0,𝜎

ℓ(𝑋; 𝑊̂𝐻, 𝜎).

We can modify this optimization problem as

min
𝑊 ≥0,𝐻 ≥0

𝐷 (𝑋,𝑊𝐻) where 𝐷 (𝑋,𝑊𝐻) =
∑︁
𝑖, 𝑗

(𝑋 −𝑊𝐻)2𝑖 𝑗 = ‖𝑋 −𝑊𝐻‖2𝐹 .

which is obtained by taking the logarithm of (2).
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Statistical model and maximum likelihood

Statistical model and maximum likelihood

Table 1: Several error measures for NMF and the corresponding distribution.
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𝛽-divergence

𝛽-divergence

An important class of estimators is based on the 𝛽-divergences. Given two
nonnegative scalars 𝑧 and 𝑦, the 𝛽-divergence between 𝑧 and 𝑦 is defined as
follows:

𝑑𝛽 (𝑧, 𝑦) =


𝑧
𝑦 − log 𝑧

𝑦 − 1 for 𝛽 = 0

𝑧 log 𝑧
𝑦 − 𝑧 + 𝑦 for 𝛽 = 1

1
𝛽 (𝛽−1)

(
𝑧𝛽 + (𝛽 − 1)𝑦𝛽 − 𝛽𝑧𝑦𝛽−1

)
for 𝛽 ≠ 0, 1

(3)

And the 𝛽-divergence between two matrices A and B is

𝐷𝛽 (𝐴, 𝐵) =
∑︁
𝑖, 𝑗

𝑑𝛽 (𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 ).
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𝛽-divergence

𝛽-divergence

Figure 1: Illustration of the 𝛽-divergences 𝑑𝛽 (1, 𝑦) for 𝛽 = −1, 0, 1, 2, 3.
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𝛽-divergence

𝛽-divergence

There are two important properties of the 𝛽-divergences:

Convexity
The function 𝑑𝛽 (𝑧, 𝑦) is convex in the second argument, 𝑦, for 𝛽 ∈ [1, 2].
This implies that 𝐷𝛽 (𝑋,𝑊𝐻) is convex in 𝐻 for 𝑊 fixed and vice versa.

Scaling
𝑑𝛽 (𝛾𝑧, 𝛾𝑦) = 𝛾𝛽𝑑𝛽 (𝑧, 𝑦)

This implies that the larger the 𝛽, the more sensitive is the 𝛽-divergence
to large values of 𝑧, and vice versa.

The NMF problem using the 𝛽-divergence, which we refer to as 𝛽-NMF, is the
following: Given 𝑋 ∈ R𝑚×𝑛

+ and 𝑟, solve

min
𝑊 ∈R𝑚×𝑟

+ ,𝐻 ∈R𝑟×𝑛+
𝐷𝛽 (𝑋,𝑊𝐻)
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𝛽-divergence

𝛽-divergence

Example (Over-/underapproximations)

Let X = sprand(100, 100, 0.5) and compute a 𝛽-NMF (𝑊, 𝐻) for 𝑟 = 10 via 100
iterations of the multiplicative update(MU) technique.
For 𝛽 = 0(IS-NMF),

‖max(0,𝑊𝐻 − 𝑋)‖𝐹
‖𝑋 −𝑊𝐻‖𝐹

≥ 100.00% while
‖max(0, 𝑋 −𝑊𝐻)‖𝐹

‖𝑋 −𝑊𝐻‖𝐹
≤ 0.33%

so that 𝑊𝐻 over-approximates 𝑋 in all cases as most entries of 𝑊𝐻 are
larger than 𝑋.
And for 𝛽 = 2(ℓ2-NMF),

‖max(0,𝑊𝐻 − 𝑋)‖𝐹
‖𝑋 −𝑊𝐻‖𝐹

≤ 59.84% while
‖max(0, 𝑋 −𝑊𝐻)‖𝐹

‖𝑋 −𝑊𝐻‖𝐹
≥ 80.12%

so that 𝑊𝐻 is more balanced around 𝑋 although it tends to under-
approximate it.
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Choice of the error measure

Choice of the error measure

Choosing the right objective function for your NMF model can be crucial.

Empirical choice
Cross validation

for music transcription based on NMF, the 𝛽-divergence with 𝛽 = 0.5
performs best.
for hyperspectral images, the 𝛽-divergence with 𝛽 ≈ 1.5 performs best.

Statistical approaches
score matching minimizes the expected squared Euclidean distance
between the scores of the true distribution and the model.
A maximum likelihood approach can also be used to assess whether the
observed data is more likely to follow a given distribution.

Distributional robustness
More recently, a distributionally robust NMF (DR-NMF) model was proposed.

min
𝑊 ≥0,𝐻≥0

max
𝛽∈Ω

𝐷𝛽 (𝑋,𝑊𝐻 ) ,

where Ω is a subset of 𝛽’s interest.
for audio signals where both KL and IS divergences are often used, using
DR-NMF with Ω = {0, 1} leads to a low reconstruction error for both IS and
KL divergences.
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Applications of NMF Models

Table 2: NMF variants for a given data matrix 𝑋 . 16 / 44
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NMF

Nonnegative Matrix Factorization

NMF in data analysis
Feature extraction in a set of images

Blind hyperspectral unmixing

Audio source separation

Recall : NMF

Given a nonnegative matrix 𝑋 ∈ R𝑚×𝑛
+ , find nonnegative matrices 𝑊 and 𝐻

such that
𝑋 ' 𝑊𝐻
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NMF

Feature extraction in a set of images

Feature extraction in a set of images

We applied NMF on the CBCL face data set[4].
CBCL face data set is

greyscale

𝑚 = 2429 images

each images is 𝑛 = 19 × 19 pixels

We create 𝑉 ∈ R𝑛×𝑚and find 𝑊 and 𝐻 by NMF.
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NMF

Feature extraction in a set of images

Q. What are the advantages of NMF?
A. NMF learns to represent faces with a set of basis images resembling parts
of faces.
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NMF

Blind hyperspectral unmixing

Blind hyperspectral unmixing

A hyperspectral image measures the intensity of the light within a scene for
many different wavelengths. Hence, for each pixel, a vector of intensities is
recorded that is equal to the fraction of light reflected by that pixel depending
on the wavelength; this is referred to as the spectral signature of the pixel.
Given a hyperspectral image, the goal of blind hyperspectral unmixing (blind
HU) is to recover the materials present in an image, referred to as the
endmembers, and their proportions in each pixel, referred to as abundances.
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NMF

Blind hyperspectral unmixing
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NMF

Blind hyperspectral unmixing
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NMF

Audio source separation

Audio source separation

Given an audio signal recorded from a single microphone, we can define
matrix 𝑋 following as. The entry of 𝑋 at position (𝑖, 𝑗) is the magnitude of the
Fourier coefficient for the 𝑗 th time frame at the 𝑖th frequency.

Goal : to blindly separate the sources that compose the signal.

Example : separate the voice and the instruments in a song.

Let us use a simple monophonic signal for illustrative purposes, namely a
piano recording of ”Mary Had a Little Lamb,“ whose musical score is shown
below.

The sequence is composed of three notes, 𝐶4, 𝐷4, and 𝐸4, that activate as
follows: 𝐸4, 𝐷4, 𝐶4, 𝐷4, 𝐸4, 𝐸4, 𝐸4.
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NMF

Audio source separation
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symNMF

Symmetric Nonnegative Matrix Factorization

Symmetric nonnegative matrix factorization(SymNMF)

SymNMF requires 𝑊 = 𝐻>, that is, 𝑋 ≈ 𝑊𝑊>. SymNMF allows us to perform
such a task. SymNMF decomposes 𝑋 as follows:

𝑋 ≈ 𝑊𝑊> =

𝑟∑︁
𝑘=1

𝑊 (:, 𝑘)𝑊 (:, 𝑘)>.

SymNMF can be applied to graph theory. In the exact case, when 𝑋 = 𝑊𝑊>,
𝑋 is decomposed into 𝑟 cliques. In summary, each rank-one matrix
𝑊 (:, 𝑘)𝑊 (:, 𝑘)> in a symNMF of 𝑋 corresponds to a subset of nodes that are
highly connected.

Pixel clustering
If 𝑋 (𝑖, 𝑗) is the similarity between pixels in an image, a symNMF of 𝑋
provides a soft clustering of the pixels into homogeneous regions.
Document clustering
If 𝑋 (𝑖, 𝑗) is the similarity between documents, symNMF classifies these
documents into similar topics.
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symNMF

Symmetric Nonnegative Matrix Factorization

Let us illustrate the capacity of symNMF to split the nodes of a graph into
different communities on a simple example using the Zachary’s karate club
data set[6].

Zachary’s karate club[6]

Zachary is a researcher who studied the relationships between the members
of a karate club. Each edge in the graph represents the friendship between
two members of the club. There are 34 members and 78 friendship links.
During his study, Zachary observed a dispute between the administrator and
the instructor of the club, which resulted in the instructor leaving the club to
start a new one, taking about half of the original club’s members with him.
Applying symNMF with 𝑟 = 2 to the symmetric adjacency matrix of this graph,
𝑋 ∈ R34×34+ , allows two communities to be identified, where each column of 𝑊
represents a community. Note that 𝑋 (𝑖, 𝑗) represents the affinity between 𝑖

and 𝑗 , and hence we set 𝑋 (𝑖, 𝑖) = 1 for 𝑖 = 1, 2, . . . , 𝑛.
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symNMF

Symmetric Nonnegative Matrix Factorization

Figure 2: Social Network Model of Relationships in the Karate Club[6]
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symNMF

Symmetric Nonnegative Matrix Factorization
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symNMF

Symmetric Nonnegative Matrix Factorization
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symNMF

Symmetric Nonnegative Matrix Factorization
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symNMF

Symmetric Nonnegative Matrix Factorization

Recall

Recall that symNMF leads to a soft clustering: some vertices belong to the
two communities with different intensities. For example, node 9 is rather
central in the graph and is shared among the two communities, with
𝑊 (9, 1) = 0.32 and 𝑊 (9, 2) = 0.54. This node is actually the only one
“misclassified” by symNMF in the sense that the person represented by node
9 left the club with the instructor (node 1), not with the administrator (node
34).
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tri-symNMF

Symmetric Nonnegative Matrix Trifactorization

Nonnegative matrix trifactorization(tri-NMF)

The NMF model with three factor matrices, referred to as nonnegative matrix
trifactorization(tri-NMF), is the following: Given 𝑋 ∈ R𝑚×𝑛

+ , 𝑟1 and 𝑟2, find
𝑊 ∈ R𝑚×𝑟1

+ ,𝑆 ∈ R𝑟1×𝑟2+ , and 𝐻 ∈ R𝑟2×𝑛+ such that

𝑋 ≈ 𝑊𝑆𝐻

Symmetric nonnegative matrix trifactorization(tri-symNMF)

Given a symmetric nonnegative matrix 𝑋 ∈ R𝑚×𝑚
+ and a factorization rank 𝑟, it

looks for a nonnegative matrix 𝑅 ∈ R𝑚×𝑟
+ and a symmetric nonnegative matrix

𝑆 ∈ R𝑟×𝑟+ such that
𝑋 ≈ 𝑊𝑆𝑊>

i.e., tri-NMF & 𝑊 = 𝐻>, 𝑆 = 𝑆>
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tri-symNMF

Symmetric Nonnegative Matrix Trifactorization

Interpretations of symNMF and tri-NMF

As for tri-NMF, tri-symNMF allows these communities to interact via the factor
𝑆. The entry 𝑊 ( 𝑗 , 𝑘) can be interpreted as the membership indicator of item 𝑗

for community 𝑘. The entry 𝑆(𝑘, 𝑙) is the strength of the connection between
communities 𝑘 and 𝑙.

So,

𝑋 (𝑖, 𝑗) ≈ 𝑊 (𝑖, :)𝑆𝑊 ( 𝑗 , :)> =

𝑟∑︁
𝑘=1

𝑟∑︁
𝑙=1

𝑊 (𝑖, 𝑘)𝑆(𝑘, 𝑙)𝑊 ( 𝑗 , 𝑙)

The value 𝑋 (𝑖, 𝑗) reflects the memberships of items 𝑖 and 𝑗 in the different
communities and how these communities interact together.
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tri-symNMF

Text mining: topic recovery and document classification

Let each column of the matrix 𝑋 correspond to a document, that is, a
nonnegative vector of word counts. For example, the entry of 𝑋 at position
(𝑖, 𝑗) can be the number of times word 𝑖 appears in document 𝑗 .

Term-Document Matrix(TDM)

D1 = "I like databases"

D2 = "I dislike databases"

then the document-term matrix would be:

I like dislike databases

D1 1 1 0 1
D2 1 0 1 1
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tri-symNMF

Text mining: topic recovery and document classification

The matrix 𝑋 can also be constructed in different, more sophisticated ways,
for example, with the term frequency-inverse document frequency (tf-idf)[5].

Term Frequency times Inverse Document Frequency(TF-IDF)

Suppose we have a collection of 𝑁 documents. Define 𝑓𝑖 𝑗 to be the frequency
(number of occurrences) of term (word) 𝑖 in document 𝑗 . And suppose term 𝑖

appears in 𝑛𝑖 of the 𝑁 documents in the collection.

𝑇𝐹𝑖 𝑗 =
𝑓𝑖 𝑗

max𝑘 𝑓𝑘 𝑗
and 𝐼𝐷𝐹𝑖 = log2 (𝑁/𝑛𝑖)

Finally, The TF-IDF score for term i in document j is then defined to be

𝑇𝐹-𝐼𝐷𝐹𝑖 𝑗 = 𝑇𝐹𝑖 𝑗 × 𝐼𝐷𝐹𝑖

The terms with the highest TF-IDF score are often the terms that best
characterize the topic of the document.
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tri-symNMF

Text mining: topic recovery and document classification

This is the so-called bag of words model where the positions of the words in
a document are not taken into account. The NMF of 𝑋 provides the model

𝑋 (:, 𝑗) ≈
𝑟∑︁

𝑘=1

𝑊 (:, 𝑘)𝐻 (𝑘, 𝑗)

Figure 3: Illustration of NMF for text mining: extraction of topics, and classification of
each document with respect to these topics.
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tri-symNMF

Topic modeling

Since the word-by-document matrix 𝑋 is usually full rank, 𝑋 is typically far
from a low-rank matrix, and it does not follow the NMF model 𝑋 ≈ 𝑊𝐻 very
closely. The vector 𝑋 (:, 𝑗) is a sample of a random variable 𝑥 𝑗 ∈ R𝑚. The
distribution of 𝑥 𝑗 is such that E(𝑥 𝑗 ) = 𝑊̂𝐻 (:, 𝑗) where (𝑊̂, 𝐻) are deterministic
but unknown parameters to be estimated. In the context of topic modeling,
these parameters can be interpreted as follows

The columns of 𝑊̂ correspond to topics.∑
𝑊̂ (:, 𝑘) = 1 for all 𝑘

𝑊̂ (𝑖, 𝑘) is the probability of picking the word 𝑖 when discussing the topic 𝑘.

The vector 𝐻̂ (:, 𝑗)
‖𝐻̂ (:, 𝑗) ‖1

indicates the proportion of each topic discussed in

the 𝑗 th document, while ‖𝐻 (:, 𝑗)‖1 equals the number of words present
in the document.
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tri-symNMF

Probabilistic Latent Semantic Analysis and Indexing

In PLSA, the number of documents, 𝑛, is assumed to be fixed, while the
dictionary contains 𝑚 words. The observation is a matrix of word counts,
𝑋 ∈ Z𝑚×𝑛

+ , where 𝑋 (𝑖, 𝑗) is the number of times word 𝑖 appears in document 𝑗 .

ℓ = 𝑒>𝑋𝑒

is length of a set of documents.
Let us define

the vector 𝑠̂ ∈ R𝑟+ where 𝑠̂(𝑘) is the probability of a word sampled
randomly to be associated to with the 𝑘th topic for 𝑘 = 1, 2, . . . , 𝑟 with
𝑠̂>𝑒 = 1.

the matrix 𝐴 ∈ R𝑚×𝑟
+ where 𝐴(𝑖, 𝑘) is the probability of using the 𝑖th word

in the dictionary assuming we are discussing the 𝑘th topic, for
𝑖 = 1, 2, . . . , 𝑚 and 𝑘 = 1, 2, . . . , 𝑟 with 𝐴>𝑒 = 𝑒 and

the matrix 𝐵 ∈ R𝑟×𝑛+ where 𝐵(𝑘, 𝑗) is the probability of using the 𝑗 th
document assuming we are discussing the 𝑘th topic, for 𝑘 = 1, 2, . . . , 𝑟
and 𝑗 = 1, 2, . . . , 𝑛 with 𝐵𝑒 = 𝑒.
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tri-symNMF

Probabilistic Latent Semantic Analysis and Indexing

Then, PLSA assumes the word co-occurrence matrix 𝑋 of length ℓ is a
sample of a random variable 𝑋 and is generated by sampling ℓ words as
follows:

0 Set 𝑋 (𝑖, 𝑗) = 0 for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
1 For 𝑝 = 1, 2, . . . , ℓ,

1.1 Pick a topic 𝑘 ∈ {1, 2, ..., 𝑟 } with probability given by 𝑠.
1.2 Pick a word 𝑖 ∈ {1, 2, ..., 𝑛} with probability given by 𝐴̂(:, 𝑘).
1.3 Pick a document 𝑗 ∈ {1, 2, ..., 𝑚} with probability given by 𝐵 (𝑘, :).
1.4 𝑋 (𝑖, 𝑗) = 𝑋 (𝑖, 𝑗) + 1.

39 / 44



Introduction Error measures Applications of NMF Models Conclusion References

tri-symNMF

Probabilistic Latent Semantic Analysis and Indexing

Example of PLSA

D1 = "I like databases"

D2 = "I love databases"

D3 = "Math is my life"

D4 = "Math is funny"

The TDM of these documents as follow:

I like love databases Math is my life funny

D1 1 1 0 1 0 0 0 0 0
D2 1 0 1 1 0 0 0 0 0
D3 0 0 0 0 1 1 1 1 0
D4 0 0 0 0 1 1 0 0 1
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Example of PLSA

Let the topic is “databases” and “math” then the number of topic is 2, so
example of 𝑠̂ is

𝑠̂𝑇 = [0.5, 0.5]

And example of 𝐴 and 𝐵 is as follows:

𝐴 =



0.333 0
0.167 0
0.167 0
0.333 0
0 0.286
0 0.286
0 0.143
0 0.143
0 0.143


, 𝐵 =

[
0.5 0.5

0.571 0.429

]

And the length of all document ℓ = 13.
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PLSA assumes that each word sampled in the data set is generated so that
the words and documents are conditionally independent given the hidden
topic. The above model implies that

1

ℓ
E
(
𝑋

)
= 𝐴 diag ( 𝑠̂) 𝐵

since 1
ℓ
E
(
𝑋𝑖 𝑗

)
=
∑𝑟

𝑘=1 𝑠̂(𝑘)𝐴(𝑖, 𝑘)𝐵(𝑘, 𝑗).

Moreover, if ℓ is sufficiently large, 1
ℓ
𝑋 get closer to 1

ℓ
E
(
𝑋

)
.

Finally, we have
𝑋 ≈ ℓ𝐴 diag ( 𝑠̂) 𝐵
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Now our goal of PLSA is to estimate 𝑠̂, 𝐴, and 𝐵 for given 𝑋 and 𝑟.
We assume that 𝑋 (𝑖, 𝑗) follows Poisson distribution of parameter
(𝐴 diag( 𝑠̂)𝐵)𝑖, 𝑗 for PLSA, i.e., a probability mass function given by

Pr(𝑋 (𝑖, 𝑗) = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘!
where 𝜆 = (𝐴 diag( 𝑠̂)𝐵)𝑖, 𝑗

It then uses the maximum likelihood estimator for (𝐴, 𝑠̂, 𝐵) which is obtained
by solving

max
(𝐴,𝑠,𝐵) ≥0

∑︁
𝑖, 𝑗 ,𝑘

𝑋𝑖, 𝑗 log(𝐴 diag(𝑠)𝐵)𝑖, 𝑗 such that 𝑠>𝑒 = 1, 𝐴>𝑒 = 𝑒 and 𝐵>𝑒 = 𝑒.

(4)
A solution (𝐴, 𝑠, 𝐵) can be used to construct an NMF (𝑊, 𝐻) of 𝑋, by
choosing 𝑊 = 𝐴 and 𝐻 = ℓ diag(𝑠)𝐵 so that

𝑋 ≈ ℓ𝐴 diag(𝑠)𝐵 = 𝑊𝐻.
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Conclusion

“All models are wrong, but some are useful” - George E. P. Box
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