Mathematics, Pusan National University

MATRIX ANALYSIS

2.1. Unitrary matrices and the QR Factorization

Taehyeong Kim th_kim@pusan.ac.kr

September 24, 2020

Content

Unitrary matrices and the QR factorization

Definition

A list of vectors $x_1, \ldots, x_k \in \mathbb{C}^n$ is **orthogonal** if $x_i^* x_j = 0$ for all $i \neq j, i, j \in \{1, \ldots, k\}$. If, in addition, $x_i^* x_i = 1$ for all $i = 1, \ldots, k$, then the list is **orthonormal**. Ir is often convenient to say that " x_1, \ldots, x_k are orthogonal (respectively, orthonormal)" instead of the nore formal statement "the list of vector v_1, \ldots, v_k is orthogonal (orthonormal, respectively)."

Theorem

Every orthonormal list of vector in \mathbb{C}^n is linearly independent.

Proof.

Suppose that x_1, \ldots, x_k is an orthonomal set, and suppose that $0 = \alpha_1 x_1 + \cdots + \alpha_k x_k$. Then

$$0 = (\alpha_1 x_1 + \dots + \alpha_k x_k)^* (\alpha_1 x_1 + \dots + \alpha_k x_k)$$
$$= \sum_{i,j} \bar{\alpha}_i \alpha_j x_i^* x_j$$
$$= \sum_{i=1}^k |\alpha_i|^2$$

because the vectors x_i are orthogonal and normalized. Thus, all $\alpha_i = 0$ and hence $\{x_i, \ldots, x_k\}$ is linearly independent set.

Definition

A matrix $U \in M_n$ is unitrary if $U^*U = I$. A matrix $U \in M_n(R)$ is real orthogoanl if $U^TU = I$.

Example

 $U \in M_n$ and $V \in M_m$ are unitrary if and only if $U \oplus V \in M_{m+n}$ is unitrary.

Theorem

If $U \in M_n$, the following are equivalent:

- ► *U* is unitrary
- ightharpoonup U is nonsingular and $U^* = U^{-1}$
- $ightharpoonup UU^* = I$
- ► *U** is unitrary
- ► The columns of *U* are orthonormal
- ► The rows of *U* are orthonormal
- For all $x \in \mathbb{C}^n$, $||x||_2 = ||Ux||_2$

Definition

A linear transformation $T: \mathbf{C}^n \to \mathbf{C}^m$ is called a **Euclidean isometry** if $||x||_2 = ||Tx||_2$ for all $x \in \mathbf{C}^n$. A square complex matrix $U \in M_n$ is a **Euclidean isometry** if and only if it is unitrary. In chapter 5, there are other kindes of isometries.

If U, V are unitrary, then UV is also unitrary.

$$(\because (UV)(UV)^* = U(VV^*)U^* = UU^* = I)$$

The set of unitrary matrices in M_n forms a group.

Lemma

Let $U_1, U_2, \ldots \in M_n$ are given infinite sequence of unitrary matrices. There exists an infinite subsequence $U_{k_1}, U_{k_2}, \ldots, 1 \leq k_1 < k_2 < \cdots$, such that all of the entries of U_{k_i} converge to the entries of a unitrary matrix as $i \to \infty$.

Theorem

Let $A \in M_n$ be nonsingular. Then A^{-1} is similar to A^* if and only if there is a nonsingular $B \in M_n$ such that $A = B^{-1}B$.

Proof.

$$(\Leftarrow)$$

$$A = B^{-1}B \Rightarrow A^{-1} = (B^*)^{-1}B$$
$$\Rightarrow B^*A^{-1}(B^*)^{-1} = B(B^*)^{-1} = ((B^*)^{-1}B)^* = A^*$$

Theorem

Let $A \in M_n$ be nonsingular. Then A^{-1} is similar to A^* if and only if there is a nonsingular $B \in M_n$ such that $A = B^{-1}B$.

Proof (Cont.)

 (\Rightarrow)

 A^{-1} is similar to A^* . Then there is a nonsingular $S \in M_n$ such that $SA^{-1}S^{-1} = A^* \Rightarrow S = A^*SA$.

$$S_{\theta} = A^* S_{\theta} A$$
, $S_{\theta}^* = A^* S_{\theta}^* A$ where $S_{\theta} = e^{i\theta} S$

$$H_{\theta} = A^* H_{\theta} A$$
 where $H_{\theta} = S_{\theta} + S_{\theta}^*$

If H_{θ} were singular, there would be a nonzero $x \in \mathbb{C}^n$ such that $0 = H_{\theta}x = S_{\theta}x + S_{\theta}^*x$

Theorem

Let $A \in M_n$ be nonsingular. Then A^{-1} is similar to A^* if and only if there is a nonsingular $B \in M_n$ such that $A = B^{-1}B$.

Proof (Cont.)

So $-x = S_{\theta}^{-1} S_{\theta}^* x = e^{2i\theta} S^{-1} S^* x = e^{2i\theta} x$.

Choose $\theta_0 \in [0, 2\pi)$ such that $-e^{2i\theta_0}$ is not an eigenvalue of $S^{-1}S^*$. The resulting Hermitian matrix $H = H_{\theta_0}$ is nonsingular and has the property that $H = A^*HA$.

B/12

Lemma

Let a unitrary $U \in M_n$ be partitioned as $U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix}$, in which $U_{11} \in M_k$. Then $rankU_{12} = rankU_{21}$ and $rankU_{22} = rankU_{11} + n - 2k$. In particular, $U_{12} = 0$ if and only if $U_{21} = 0$, in which case U_{11} and U_{22} are unitrary.

Example

Householder matrices Let $\omega \in \mathbb{C}^n$ be nonzero vector. The **Householder matrix** $U_\omega \in M_n$ is defined by $U_\omega = I - 2(\omega^*\omega)^{-1}\omega\omega^*$. If ω is a unit vector $U_\omega = I - 2\omega\omega^*$.

9/12

Theorem

Let $x,y \in \mathbb{C}^n$ be given and suppose that $\|x\|_2 = \|y\|_2 > 0$. If $y = e^{i\theta}x$ for some real θ , let $U(y,x) = e^{i\theta}I_n$; otherwise, let $\phi \in [0,2\pi)$ be such that $x^*y = e^{i\phi}|x^*y|$; let $\omega = e^{i\phi}x - y$; and let $U(y,x) = e^{i\phi}U_\omega$ where $U_\omega = I - 2(\omega^*\omega)^{-1}\omega\omega^*$ is a Householder matrix. Then U(y,x) is unitrary and essentially Hermitian, U(y,x)x = y, and U(y,x)x = y, whenever $z \perp x$. If x and y are real, then U(y,x) is real orthogonal: U(y,x) = I if y = x, and U(y,x) is the real Householder matrix U_{x-y} otherwise.

Theorem

Let $A \in M_{n,m}$ be given.

- (a) If $n \ge m$, there is a $Q \in M_{n,m}$ with orthonormal columns and an upper triangular $R \in M_m$ with nonnegative main diagonal entries such that A = QR.
- (b) If rankA = m, then the factors Q and R in (a) are uniquely determined and the main diagonal entries of R are all positive.
- (c) If m = n, then the factor Q in (a) is unitary.
- (d) There is a unitary $Q \in M_n$ and an upper triangular $R \in M_n$, m with nonnegative diagonal entries such that A = QR.
- (e) If A is real, then the factors Q and R in (a), (b), (c), and (d) may be taken to be real.

Theorem

If $X = [x_1, ..., x_k] \in M_{n,k}$ and $Y = [y_1, ..., y_k] \in M_{n,k}$ have orthonormal columns, then there is a unitrary $U \in M_n$ such that Y = UX. If X and Y are real, then U may be taken to be real.

