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Introduction
Eigenvalues and Eigenvectors

The eigenvectors of A don’t change direction when you multiply them
by A. The output Ax is on the same line as the input vector x. The
eigenvector x is just multiplied by its eigenvalue 𝜆.
If eignevectors of A x1, . . . , xn are linearly independent, every v ∈ Rn

can be expressed as

v = c1x1 + · · · + cnxn

Av = c1𝜆1x1 + · · · + cn𝜆nxn

Ak v = c1𝜆
k
1x1 + · · · + cn𝜆

k
nxn
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Introduction
Eigenvalues and Eigenvectors

Example

The rotation Q =

[
0 −1
1 0

]
has imaginary eigenvalues i ,−i .

Q
[

1
−i

]
=

[
0 −1
1 0

] [
1
−i

]
= (i)

[
1
−i

]
and Q

[
1
i

]
=

[
0 −1
1 0

] [
1
i

]
= (−i)

[
1
i

]

Here is some warnings about eigenvalues and eigenvectors.
I The eigenvalues of A + B are not usually 𝜆(A) + 𝜆(B)
I The eigenvalues of AB are not usually 𝜆(A) × 𝜆(B).
I A double eigenvalue 𝜆1 = 𝜆2 might or might not have two

independent eigenvectors.
I The eigenvectors of a real matrix A are orthogonal if and only if

AT A = AAT .
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Introduction
System of Linear Differential Equations

The matrix A also controls a system of linear differential equations
du/dt = Au. The system starts at an initial vector u(0) when t = 0.

u(0) = c1x1 + · · · + cnxn

u(t) = c1e𝜆1tx1 + · · · + cne𝜆ntxn
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Introduction
System of Linear Differential Equations

Example{
y ′

1 = −0.02y1 + 0.02y2 y1 (0) = 0
y ′

2 = 0.02y1 − 0.02y2 y2 (0) = 150

⇒ y′ = Ay where A =

[
−0.02 0.02
0.02 −0.02

]
Let y = xe𝜆t , then y′ = 𝜆xe𝜆t = Axe𝜆t ⇒ Ax = 𝜆x ⇒ (A − 𝜆I)x = 0.

⇒ 𝜆1 = 0, 𝜆2 = −0.04, x1 =

[
1
1

]
, x2 =

[
1
−1

]
⇒ y = c1x1e𝜆1t + c2x2e𝜆2t = c1x1 + c2x2e−0.04t

⇒ y(0) = c1

[
1
1

]
+ c2

[
1
−1

]
=

[
0

150

]
⇒ c1 = 75, c2 = −75

∴ y = 75
[
1
1

]
− 75

[
1
−1

]
e−0.04t
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Computing the Eigenvalues (by hand)

It is easy to see that Ax = 𝜆x is equivalent to (A − 𝜆I)x = 0.
Then (A − 𝜆I) is not invertible(singular).(det(A − 𝜆I) = 0)

Question
If A is shifted to A + sI, what happens to the x’s and 𝜆’s?

Answer
The eigenvectors x stay the same. Every eigenvalue 𝜆 shifts by the
number s :

(A + sI)x = 𝜆x + sx = (𝜆 + s)x
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Similar Matrices

Definition (Similar Matrix)
The matrices BAB−1 (for every invertible B) are “similar” to A: same
eigenvalues.

Eigenvector of BAB−1 associated with 𝜆 is the eigenvectors x of A are
multiplied by B.

∵ (BAB−1) (Bx) = BAx = B𝜆x = 𝜆(Bx)
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Similar Matrices
Triangularization

When the determinant of A − 𝜆I would be completely hopeless, it is
very hard to compute eigenvalues of large matrices.
We use triangularization.
The idea is to make BAB−1 gradually into a triangular matrix.
The eigenvalues are not changing and they gradually show up on the
main diagonal of BAB−1.

Limitation of triangularization
We have to compute B−1 for each invertible matrix B!
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Diagonalizing a Matrix

Suppose A has a full set of n independent eigenvectors.
Put those eigenvectors x1, . . . , xn into an invertible matrix X . Then

A
x1 · · · xn

 =
Ax1 · · ·Axn

 =
𝜆x1 · · · 𝜆xn

 =
x1 · · · xn



𝜆1

. . .

𝜆n


Let Λ be eigenvalue matrix. The equation AX = XΛ tells us that
A = XΛAX−1.

Limitation of Diagonalization
We still have to compute X−1!
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Schur triangularization theorem

What if...
What if B is a unitary matrix in triangularization T = BAB−1?
Then we can triangulate the matrix A without finding the inverse
matrix B−1. Just take B∗.

Schur Decomposition
If A is a n × n square matrix with complex entries, then A can be
expressed as

A = UTU∗

where U is a unitary matrix, and T is an upper triangular matrix.
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Schur triangularization theorem

Definition (unitarily similar)
Two square matrices A and B are unitarily similar if there exist unitary
matrix P such that

A = P∗BP .

Theorem
Every square complex matrix A is unitarily similar to an upper
triangular matrix, i.e., there exists a unitary matrix U such that
T = U∗AU is triangular.
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Schur triangularization theorem

Proof.
We use mathematical induction on size of A.
(n = 1) trivial.
Assume that n > 1, and the result holds for all matrices of size less
than n. n. Since every complex matrix has an eigenvalue, choose an
eigenvalue 𝜆 of A and an associated eigenvector v = (v1, . . . , vn).
Let x =

v1v
‖v1v‖ and set u = x − e1.

And we will put Q in some cases.{
Q : Householder matrix associated with u (if x ≠ e1)
Q = I (if x = e1)
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Schur triangularization theorem

Proof.
Then x = Qe1, it means that the first column of Q is x. We already
know that every householder matrix is unitary and hermitian. So x∗ is

first row of Q∗. Since Q−1 = Q∗ = Q, Q =
[
x|V

]
=

[
x∗

V ∗

]
. Therefore,

QAQ = QA
[
x|V

]
= Q

[
𝜆x|AV

]
=

[
𝜆e1 |

[
x∗

V ∗

]
AV

]
=

[
𝜆 x∗AV
0 V ∗AV

]
.
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Schur triangularization theorem

Proof.
The size of V ∗AV is (n − 1) × (n − 1), so we can apply the induction,
there exists unitary matrix R such that Tn−1 = R∗ (V ∗AV )R is upper
triangular matrix. Let

U = Q
[
1 0
0 R

]
,

then

U∗U =

[
1 0
0 R∗

]
Q∗Q

[
1 0
0 R

]
= I .

So U is unitary.

Taehyeong Kim | Eigenvalues and Eigenvectors
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Schur triangularization theorem

Proof.

T = U∗AU =

[
1 0
0 R∗

]
QAQ

[
1 0
0 R

]
=

[
1 0
0 R∗

] [
𝜆 x∗AV
0 V ∗AV

] [
1 0
0 R

]
=

[
1 0
0 R∗

] [
𝜆 x∗AVR
0 V ∗AVR

]
=

[
𝜆 x∗AVR
0 R∗V ∗AVR

]
=

[
𝜆 x∗AVR
0 Tn−1

]
Hence, T is triangular matrix. �
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Nondiagonalizable Matrices

Suppose 𝜆 is an eigenvalue of A.
1. Eigenvectors (geometric) There are nonzero solutions to

Ax = 𝜆x.
2. Eigenvalues (algebraic) The determinant of A − 𝜆I is zero.

And we want to know its multiplicity.
1. (Geometric Multiplicity = GM) Count the independent

eigenvectors for 𝜆. Look at the dimension of the nullspace of
A − 𝜆I.

2. (Algebraic Multiplicity = AM) Count the repetitions of 𝜆 among
the eigenvalues. Look at the roots of det (A − 𝜆I) = 0.

Note
Always GM ≤ AM for each 𝜆.
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Nondiagonalizable Matrices

Proof.
Let x1, . . . , xr be linearly independent eigenvectors associated to 𝜆,
so 𝜆 has geometric multiplicity r . Let xr+1, . . . , xn be basis for Rn.
And let S be the matrix which columns xk .
Consider AS.

AS =


| |

𝜆x1 · · · 𝜆xr · · ·
| |

 ⇒ S−1AS =



𝜆

. . . B
𝜆

0 C


where B : r × n matrix, C : (n − r ) × (n − r ) matrix.
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Nondiagonalizable Matrices

Proof.
det(S−1AS − 𝜆I) = det(S−1AS − S−1 (𝜆I)S)

= det(S−1 (A − 𝜆I)S)
= det(S−1) det(A − 𝜆I) det(S)
= det(A − 𝜆I)

Therefore the characteristic polynomial of A and S−1AS are the same.
It is easy to see that the characteristic polynomial of S−1AS has a
factor of at least (𝜆 − 𝜆)r .(∵ determinant of block matrices)
∴ GM ≤ AM. �
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