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Introduction

In this section, we consider the Exact NMF problem defined as follows.

Problem 2.1 (Exact NMF)

Given a nonnegative matrix X ∈ Rm×n+ and a factorization rank r, compute, if
possible, two nonnegative matrices W ∈ Rm×r+ and H ∈ Rr×n+ such that

X = WH

We refer to WH as an Exact NMF of X of size r.

The nonnegative rank is the topic of Chapter 3. But here is notation.

Nonnegative rank

Exact NMF is closely related to the quantity referred to as the nonnegative
rank of X which is the smallest r such that X admits an Exact NMF size r,
and it is denoted rank+(X).
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2.1. Geometric interpretation

The geometric interpretation is a key aspect of NMF. (See Chapter 4, 5, 7)

In this section

Describe the geometric interpretation of Exact NMF in term of nested
convex cone.

Describe the geometric interpretation of Exact NMF in term of nested
convex hulls.

Prove rank+(X) = rank(X) for any nonnegative matrix X such that
rank(X) ≤ 2.

Provide example of Exact NMF.
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2.1.1. Interpretation with nested convex cone

2.1.1. Interpretation with nested convex cone

Definition [1] (Cone)

A set C is called a cone, if for every x ∈ C and θ ≥ 0 we have θx ∈ C.

Definition [1] (Convex cone)

A set C is called a convex cone, if it is convex and cone, which means that for
every x1, x2 ∈ C and θ1, θ2 ≥ 0 we have θ1x1 + θ2x2 ∈ C.

Definition (Cone in this book)

Given a matrix A ∈ Rm×n, cone(A) is the convex cone generated by the
columns of A, that is,

cone(A) =
{

x |x = Ay for some y ∈ Rn, y ≥ 0
}
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2.1.1. Interpretation with nested convex cone

2.1.1. Interpretation with nested convex cone

Definition [1] (Conic hull)

The conic hull of a set C is the set of all conic combinations of points in C, i.e.,

{θ1x1 + · · · + θk xk |xi ∈ C, θi ≥ 0, i = 1, . . . , k} ,

which is also the smallest convex cone that contains C.

Figure 1: The conic hulls (shown shaded) of the two sets [1]
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2.1.1. Interpretation with nested convex cone

2.1.1. Interpretation with nested convex cone

Remark 2.1

dimension of cone(A) = dimension of the subspace spaned by A = rank(A)

Let us consider the Exact NMF of matrix X = WH. Since
X(:, j) = WH(:, j),W ≥ 0, and H ≥ 0,

X(:, j) ∈ cone(W) ⊆ Rm+

for all j. Equivalently,
cone(X) ⊆ cone(W) ⊆ Rm+ ,

which is a nested cone problem.

Nested cone problem

Given two cones nested in each other, namely cone(X) ⊆ Rm+ , find a cone
nested between them, namely cone(W).
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2.1.1. Interpretation with nested convex cone

2.1.1. Interpretation with nested convex cone

Figure 2: Geometric illustration of Exact NMF for m = r = 3 and n = 25.

Figure 2 shows that cone(X) ⊆ cone(W) ⊆ R3+.
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Why is nested convex hull used more than nested convex cone?

Intuition

Related literature

Illustration
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Before going further, let us define a few useful notations about convex hulls
and polytopes.

Definition [1] (Convex)

A set C is convex if the line segment between any two points in C lies in C,
i.e., if for any x1, x2 ∈ Cand any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1 − θ)x2 ∈ C.

Figure 3: Some simple convex and nonconvex sets[1]
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Before going further, let us define a few useful notations about convex hulls
and polytopes.

Definition [1] (Convex hull)

The convex hull of a set C, denoted conv(C), is the set of all convex
combinations of points in C:

conv(C) = {θ1x1 + · · · + θk xk |xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}

Figure 4: The convex hulls of two sets[1].
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Before going further, let us define a few useful notations about convex hulls
and polytopes.

Definition (Convex hull in this book)

Given a A ∈ Rm×n, conv(A) is convex hull of the columns of a A, i.e.,

conv(A) =
{
x |x = Ay for some y ∈ Rn, y ≥ 0, and eT y = 1

}
where e is the vector of all ones of appropriate dimension, so that
eT y =

∑n
i=1 yi .
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

How to select vertices of conv(A)?

Note that all vertices of conv(A) are contained in the set of the columns of A.

A(:, j) is a vertex of conv(A)

⇔A(:, j) < conv(A(:,J)) where J = {1,2, . . . ,n} \ { j}

Definition (Simnplex in dimension r)

∆
r =

{
x ∈ Rr |x ≥ 0, eT x = 1

}
= conv(Ir ) (1)

where Ir is the identity matrix of dimension r.

In fact, the vertices of ∆r are unit vectors, and Ir = (e1, e2, . . . , er ).
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Definition (Column space)

col(A) =
{

x |x = Ay for y ∈ Rn
}

and its affine hull as

Definition (Affine hull of col(A))

aff(A) =
{
x |x = Ay for y ∈ Rn and eT y = 1

}
(2)
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Note

Note that containment relationship among conv(A),aff(A),col(A)

conv(A) ⊆ aff(A) ⊆ col(A)

Note

If aff(A) contains the origin, then aff(A) = col(A).

conv(A) =
{
x |x = Ay for some y ∈ Rn, y ≥ 0, and eT y = 1

}
aff(A) =

{
x |x = Ay for y ∈ Rn and eT y = 1

}
col(A) =

{
x |x = Ay for y ∈ Rn

}
14 / 44
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Let us describe the geometric interpretation of Exact NMF in term of nested
convex hulls. Given an Exact NMF of X = WH, the following two assumptions
can be made without loss of generality:

Assumtion

A1 The matrices X and W do not contain columns equal to the zero vector.

A2 ‖X(:, j)‖1 = ‖W(:, j)‖1 = 1 for all j, k.
Given a matrix A with nonzero columns, let DA be the diagonal matrix as

DA = diag

(
1

‖A(:,1)‖1
,

1

‖A(:,2)‖1
, . . . ,

1

‖A(:,n)‖1

)
Let θ(A) = ADA, then

X = WH ⇔ XDX︸︷︷︸
θ(X)

= (W DW )︸   ︷︷   ︸
θ(W )

(
D−1W HDX

)
︸         ︷︷         ︸

H′

⇔ θ(X) = θ(W)H ′ (3)
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Figure 5: Geometric illustration of Exact NMF for m = r = 3 and n = 25.
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Lemma 2.1. [2, Thm 3.2]

Let (W,H) be any factorization of X. If the entries in each column of X and W
sum to one, then the entries in each column of H sum to one.

Proof.

Since eT X = eT and eTW = eT , we have

eT = eT X = eTWH = eT H.

�
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2.1.2. Interpretation with nested convex hulls

2.1.2. Interpretation with nested convex hulls

Theorem 2.2.

Computing an Exact NMF of X of size r is equivalent to finding r vertices with
in the unit simplex ∆m whose convex hull contains the columns of θ(X).

Figure 6: Geometric illustration of Theorem 2.2 with conv(X) ⊆ conv(W ) ⊆ ∆m where
the columns of X and W have unit `1-norm.
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2.1.2. Interpretation with nested convex hulls

2.1.2.1. Reducing the dimension by one

For unit simplex ∆m, the following holds:

for x ∈ ∆m, xi = 1 −
∑
j,i

xj for all i.

Hence, when consider the interpretation of Exact NMF in terms of nested
convex hulls, it is possible to reduce the dimension of the problem by one and
represent it in a lower dimensional subspace. Let us define

Sr =
{
x ∈ Rr |x ≥ 0, eT x ≤ 1

}
,

which is the convex hull of the unit simplex and the origin, that is
Sr = conv([Ir ,0]). For a matrix A such that A(:, j) ∈ ∆m, denote
Ā = A(1 : m − 1, :) such that Ā(:, j) ∈ Sm−1
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2.1.2. Interpretation with nested convex hulls

2.1.2.1. Reducing the dimension by one

Lemma 2.3

For x ∈ ∆m,W ∈ Rm×r such that W(:, j) ∈ ∆m for all j, and h ∈ ∆r ,

x = W h⇔ x̄ = W̄h

Proof.

Let x =
(

x̄
xm

)
and W =

(
W̄

WT
m

)
. Since x ∈ ∆m and W(:, j) ∈ ∆m for all j,

xm = 1 − eT x̄ and wm = e − W̄T e.

(⇒) Trivial.

(⇐) If x̄ = W̄h, since eT h = 1,

xm = 1 − eT x̄ = 1 − eT W̄ h = 1 −
(
W̄T e

)T
h = 1 − (e − wm)

T h = wT
mh

Therefore, x = Wh.

�
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2.1.2. Interpretation with nested convex hulls

2.1.2.1. Reducing the dimension by one

Lemma 2.3 implies that for X ≥ 0 and W ≥ 0 whose columns have unit
`1-norm, we have

conv(X) ⊆ conv(W) ⊆ ∆m ⇔ conv(X̄) ⊆ conv(W̄) ⊆ Sm−1.

Figure 7 Figure 8
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

In [5], author introduce relationship between the rank and the nonnegative
rank of a matrix. We need two lemmas to prove the geometric interpretation
of Exact NMF in terms of convex hulls.

Lemma 2.4.

Let X ∈ Rm×n+ be a matrix whose columns have unit `1-norm, that is, XT e = e.
We have

aff(X) = col(X) ∩
{
x |eT x = 1

}
and

conv(X) ⊆ col(X) ∩ ∆m.
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Proof.

By Definition of Affine hull of col(X) and columns of X have unit `1-norm, we
have

aff(X) =
{
x |x = Xα for α ∈ Rn and eTα = 1

}
=

{
x |x = Xα for α ∈ Rn and eT x = 1

}
(∵ eT x = eT Xα = eTα = 1)

= col(X) ∩
{
x |eT x = 1

}
Since X ≥ 0 and conv(X) ⊆ aff(X),

conv(X) ⊆ aff(X) ∩ Rm+ = col(X) ∩
{
x |eT x = 1

}
∩ Rm+ = col(X) ∩ ∆m

�
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Lemma 2.5.

Let X ∈ Rm×n, be a nonnegative matrix with no column equal to the zero
vector. Then, conv(θ(X)) and col(X) ∩ ∆m are polytopes of dimension
rank(X) − 1.

Proof.

We have dim(conv(θ(X))) = dim(aff(θ(X))) and col(X) = col(XDX ) = col(θ(X)).
And Lemma 2.4 implies

aff(θ(X)) = col(X) ∩
{
x |eT x = 1

}
and

col(X) ∩ ∆m = col(X) ∩
{
x |eT x = 1

}
∩ Rm+ .

By definition, col(X) ∩ ∆m and conv(θ(X)) has same dimension of the
polytopes.

24 / 44



Introduction 2.1. Geometric interpretation References

2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Proof (Cont.)

And dim(aff(θ(X))) = rank(X) − 1.
Let us show this rigorously using algebraic arguments.

aff(θ(X)) =

{
n∑
i=1

αiY (:, i)|α ∈ Rn,
n∑
i=1

αi = 1

}
=

{
Y (:,n) +

n−1∑
i=1

αi(Y (:, i) − Y (:,n))|αi ∈ R for i = 1,2, . . . n − 1

}
= Y (:,n) + col

(
Y ′

)

25 / 44
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

The first result of Thomas [5] from Lemma 2.5

Theorem 2.6. [5]

If X is a nonnegative matrix with rank(X) ≤ 2, then rank(X) = rank+(X).
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Remark 2.2 (Link with separable NMF)

When rank(X) = 2, the two columns of W in Exact NMF of X of size r = 2 can
be picked from the columns of X. Unfortunately, this fact does not hold for
rank(X) ≥ 3.
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Lemma 2.7.

Let X ∈ Rm×n+ , and let X = WH be an Exact NMF of X of size r = rank(X).
Then rank(W) = rank(X) and col(W) = col(X).

28 / 44
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Lemma 2.8.

Let X ∈ Rm×n+ , and W ∈ Rm×r+ be matrices whose columns have unit `1-norm
and be such that col(W) = col(X). Then

aff(W) = aff(X)

29 / 44
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Corollary 2.9.

Let X ∈ Rm×n+ , and W ∈ Rm×r+ be matrices whose columns have unit `1-norm
and be such that col(W) = col(X). Then

col(W̄) = col(X̄) and aff(W̄) = aff(X̄)

30 / 44
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Theorem 2.10. [5]

The nonnegative rank of

X =
1

2


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 (4)

is equal to 4, while rank(X) = 3.
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2.1.3. Deriving the result of Thomas

2.1.3. Deriving the result of Thomas

Figure 9: Geometric illustration of Exact NMF for the 4-by-4 matrix X of Thomas from
(4). The matrix X̄ is obtained by discarding the last row of matrix X. The columns of X̄
are the vectors (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0), and (0, 0, 0.5).
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2.1.4 On the necessity of rank(W ) > rank(X )

2.1.4 On the necessity of rank(W) > rank(X)

In this section...

Example of Exact NMF corresponding to a geometric problems in [3, 4]

Gain more insight into the geometric interpretation of Exact NMF.

Let the nonnegative matrix Xa ∈ R
n×n

Xa =
1

6a



1 a 2a − 1 2a − 1 a 1
1 1 a 2a − 1 2a − 1 a
a 1 1 a 2a − 1 2a − 1

2a − 1 a 1 1 a 2a − 1
2a − 1 2a − 1 a 1 1 a

a 2a − 1 2a − 1 a 1 1


(5)

then every column of Xa has unit `1-norm.
Aim : Determine the nonnegative rank of Xa depending on the parameter a.
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2.1.4 On the necessity of rank(W ) > rank(X )

2.1.4 On the necessity of rank(W) > rank(X)

Geometry of conv(Xa) and col(Xa) ∩ ∆
6

For a > 1, rank(Xa) = 3 and we can factorize Xa as

Xa =
1

6a



1 2 0
0 1 0
0 0 1
1 0 2
2 1 2
2 2 1



−1 a − 2 −1 1 − 2a 2 − 3a 1 − 2a
1 1 a 2a − 1 2a − 1 a
a 1 1 a 2a − 1 2a − 1

 . (6)

Since the basis in (6) does not depend on the parameter a, the matrices Xa

for a > 1 share the some column space. And conv(Xa) is a hexagon. This
hexagon is contained in aff(Xa) ∩ ∆

6. (For example, see Figure 10 and 11.)
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2.1.4 On the necessity of rank(W) > rank(X)

Figure 10: Geometric illustration of Exact NMF
for the 6-by-6 matrix X2 from (5).

Figure 11: Geometric illustration of Exact NMF
for the 6-by-6 matrix X3 from (5).

35 / 44



Introduction 2.1. Geometric interpretation References

2.1.4 On the necessity of rank(W ) > rank(X )

2.1.4 On the necessity of rank(W) > rank(X)

Geometry of conv(Xa) and col(Xa) ∩ ∆
6

By Lemma 2.5, conv(Xa) is two dimensional polytope.
And by Lemma 2.4, aff(Xa) = col(Xa) ∩

{
x |eT x = 1

}
, and taking the

intersection with the nonnegative orthant, we obtain
aff(Xa) ∩ R

6
+ = col(Xa) ∩ ∆

6.
By Lemma 2.5, dim(col(Xa) ∩ ∆

6) = 2. So col(Xa) ∩ ∆
6 is polygon, and

hexagon.

X = lim
a→+∞

Xa =
1

6



0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0


. (7)

Lemma 2.4.
Let X ∈ Rm×n+ be a matrix whose columns have unit `1 -norm, that is, XT e = e. We have

aff(X ) = col(X ) ∩
{
x |eT x = 1

}
and conv(X ) ⊆ col(X ) ∩ ∆m .

Lemma 2.5.

Let X ∈ Rm×n , be a nonnegative matrix with no column

equal to the zero vector. Then, conv(θ (X )) and

col(X ) ∩ ∆m are polytopes of dimension rank(X ) − 1.
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Geometry of conv(Xa) and col(Xa) ∩ ∆
6

Since col(Xa) = col(X), we have

col(Xa) ∩ ∆
6 = col(X) ∩ ∆6

=
{
z |z = Xy, y ∈ R6, z ≥ 0, eT z = 1

}
= conv(X).
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What is the nonnegative rank of Xa

Let Xa = WaHa be Exact NMF of Xa of size rank+(Xa), and assume that the
columns of Wa have unit `1-norm. Exact NMF is equivalent to finding Wa such
that

conv(Xa) ⊆ conv(Wa) ⊆ ∆
6

Since conv(Xa) ⊆ conv(Xb) for a ≤ b, rank(Xa) ≤ rank(Xb) for a ≤ b.
We have that rank+(Xa) ≥ rank(Xa) = 3. If rank+(Xa) = rank(Xa) = 3, Lemma
2.7 implies that col(Wa) = col(Xa).

Theorem 2.2.

Computing an Exact NMF of X of size r is equivalent to finding r vertices with in

the unit simplex ∆m whose convex hull contains the columns of θ (X ).

Lemma 2.7.

Let X ∈ Rm×n+ , and let X =WH be an Exact NMF of X of size r = rank(X ).

Then rank(W ) = rank(X ) and col(W ) = col(X ).
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What is the nonnegative rank of Xa

And by Lemma 2.4, we have

conv(Wa) ⊆ conv(Xa) ∩ ∆
6.

When col(Wa) = col(Xa).
Since Wa has three columns and rank(Wa) = 3, conv(Wa) is a triangle.

Lemma 2.4.
Let X ∈ Rm×n+ be a matrix whose columns have unit `1 -norm, that is, XT e = e. We have

aff(X ) = col(X ) ∩
{
x |eT x = 1

}
and conv(X ) ⊆ col(X ) ∩ ∆m .

39 / 44



Introduction 2.1. Geometric interpretation References

2.1.4 On the necessity of rank(W ) > rank(X )

2.1.4 On the necessity of rank(W) > rank(X)

What is the nonnegative rank of Xa

Geometrically, the problem of checking whether rank+(Xa) = 3 reduces to
checking whether there exists a triangle nested between two hexagons,
namely conv(Xa) and col(Xa) ∩ ∆

6 = conv(X).
For a = 2 shown in Figure 10, four triangles fit between the two hexagons.
This implies that for any 1 < a < 2, rank+(Xa) = 3.
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What is the nonnegative rank of Xa

To compute an Exact NMF, the vertices of conv(W2) can be obtained by
averaging two consecutive vertices of conv(X), where X is given in (7); see
Figure 10. We have

X2 =
1

12



1 2 3 3 2 1
1 1 2 3 3 2
2 1 1 2 3 3
3 2 1 1 2 3
3 3 2 1 1 2
2 3 3 2 1 1


=

1

12



1 4 1
0 3 3
1 1 4
3 0 3
4 1 1
3 3 0

︸             ︷︷             ︸
W2


2/3 2/3 1/3 0 0 1/3
0 1/3 2/3 2/3 1/3 0

1/3 0 0 1/3 2/3 2/3

 ,
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What is the nonnegative rank of Xa

where

W2 =
1

12



1 4 1
0 3 3
1 1 4
3 0 3
4 1 1
3 3 0


= X



1/2 0 0
1/2 0 0
0 1/2 0
0 1/2 0
0 0 1/2
0 0 1/2


.

Another W of X2 = WH are

1

12



0 3 3
1 1 4
3 0 3
4 1 1
3 3 0
1 4 1


,

1

6



0 2 1
0 1 2
1 0 2
2 0 1
2 1 0
1 2 0


,

1

6



1 2 0
0 2 1
0 1 2
1 0 2
2 0 1
1 1 0


.
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What is the nonnegative rank of Xa

Other results:

rank+(Xa) = 4 for 3 ≥ a > 2.

rank+(Xa) ≥ 5 for a > 3.

rank+(Xa) = 5 for a > 3.

rank+(X) = 5
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2.1.4 On the necessity of rank(W) > rank(X)

Figure 12: Geometric illustration of the Exact NMF of the 6-by-6 matrix X from (7)
representing a hexagon contained within a three-dimensional polytope with five
vertices within the unit simplex ∆6. [3] 44 / 44
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