Mathematics, Pusan National University

LINEAR ALGEBRA AND LEARNING FROM DATA

Singular Values and Singular Vectors in the SVD

Taehyeong Kim th_kim@pusan.ac.kr

August 21, 2020

Content

Review

1.8.10 The SVD for Derivatives and Integrals

Pseudoinverse

Least Square Problem

Pseudoinverse and Least Square Problem

Review SVD

 $A = U\Sigma V^T$ where U and V are square orthogonal matrices.

Review SVD

 $A = U\Sigma V^T$ where U and V are square orthogonal matrices.

Figure: SVD and Big picture

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

(a) 451×439

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

(a) 451×439

(b) $\sum_{i=1}^{50} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

(a) 451×439

(b) $\sum_{i=1}^{50} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ (c) $\sum_{i=1}^{100} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

(a) 451×439

(b) $\sum_{i=1}^{50} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ (c) $\sum_{i=1}^{100} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ (d) $\sum_{i=1}^{200} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

$$A = U\Sigma V^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

Application of SVD: image compression

(a) 451×439

(b) $\sum_{i=1}^{50} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ (c) $\sum_{i=1}^{100} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ (d) $\sum_{i=1}^{200} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

The original image needs $451 \times 439 = 197989$ pixel information, but the image can be compressed effectively through SVD. If we use only the singular values up to the 100th, we only need $100 \times (451 + 439) = 89000$ values.

Historically, the first SVD was not for vectors but for **functions**.

Example. Integral and Derivative

$$A\mathbf{x}(s) = \int_0^s \mathbf{x}(t)dt$$
 and $D\mathbf{x}(t) = \frac{d\mathbf{x}}{dt}$

Historically, the first SVD was not for vectors but for **functions**.

Example. Integral and Derivative

$$A\mathbf{x}(s) = \int_0^s \mathbf{x}(t)dt$$
 and $D\mathbf{x}(t) = \frac{d\mathbf{x}}{dt}$

DA = I but $AD \neq I$! (For example, f(x) = x + 1) D is the **pseudoinverse of** A denoted as A^+ .

We can get pseudoinverse by SVD.

$$A^{+} = (U\Sigma V^{T})^{+}$$

$$= V\Sigma^{+}U^{T}$$

$$= \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{r} & \cdots & \mathbf{v}_{n} \end{bmatrix} \underbrace{\begin{bmatrix} 1/\sigma_{1} & & & \\ & \ddots & & \\ & & 1/\sigma_{r} & \end{bmatrix}}_{n \times m} \underbrace{\begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \cdots & \mathbf{u}_{m} \end{bmatrix}^{T}}_{m \times m}$$

$$\Rightarrow A^{+}A = (V\Sigma^{+}U^{T})(U\Sigma V^{T}) = I$$

Let A is full-column rank matrix, if there is no solution of the matrix equation $A\mathbf{x} = \mathbf{b}$, we can find the best solution \mathbf{x}^+ such that $A\mathbf{x}^+ = \mathbf{p}$. For example,

$$A\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \mathbf{b}$$
 (1)

Let A is full-column rank matrix, if there is no solution of the matrix equation $A\mathbf{x} = \mathbf{b}$, we can find the best solution \mathbf{x}^+ such that $A\mathbf{x}^+ = \mathbf{p}$. For example,

$$A\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \mathbf{b}$$
 (1)

(1) doesn't have solution, multiply both sides by A^T and project b into the column space of A.

$$A^{T}A\mathbf{x}^{+} = \begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} \hat{x}_{1} \\ \hat{x}_{2} \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \end{bmatrix} = A^{T}\mathbf{b} \Rightarrow \mathbf{x}^{+} = \begin{bmatrix} 1/2 \\ 2/3 \end{bmatrix}$$

$$\Rightarrow A\mathbf{x}^{+} = \mathbf{p} = \begin{bmatrix} 7/6 \\ 5/3 \\ 13/6 \end{bmatrix}, \mathbf{e} = \begin{bmatrix} -1/6 \\ 1/3 \\ -1/6 \end{bmatrix}$$
(2)

Figure: Pseudoinverse and Big picture

If we apply the pseudo inverse matrix, the solution is $x^+ = A^+b$ even if A is not full rank.

For example,

$$A\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \mathbf{b}$$

For example,

$$A\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \mathbf{b}$$

Calculate pseudoinverse of A,

$$A^{+} = \begin{bmatrix} -1/2 & 0 & -1/2 \\ -1/6 & 1/3 & 5/6 \end{bmatrix}$$

$$\Rightarrow \mathbf{x}^{+} = A^{+}\mathbf{b} = \begin{bmatrix} -1/2 & 0 & -1/2 \\ -1/6 & 1/3 & 5/6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 2/3 \end{bmatrix}$$

