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SVD
Review

Review SVD

A = UΣVT where U and V are square orthogonal matrices.

Figure: SVD and Big picture
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SVD
Review

A = UΣVT = σ1u1v
T
1 + σ2u2v

T
2 + · · · + σrurv

T
r

uiv
T
i is rank-one matrix.

Application of SVD : image compression

(a) 451 × 439
(b)

50∑
i=1

σiuiv
T
i (c)

100∑
i=1

σiuiv
T
i (d)

200∑
i=1

σiuiv
T
i

The original image needs 451 × 439 = 197989 pixel information, but the image can be
compressed effectively through SVD. If we use only the singular values up to the 100th, we
only need 100 × (451 + 439) = 89000 values.
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SVD
1.8.10 The SVD for Derivatives and Integrals

Historically, the first SVD was not for vectors but for functions.

Example. Integral and Derivative

Ax(s) =
∫ s

0

x(t)dt and Dx(t) =
dx
dt

DA = I but AD , I! (For example, f (x) = x + 1)
D is the pseudoinverse of A denoted as A+.
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SVD
Pseudoinverse

We can get pseudoinverse by SVD.

A+ = (UΣVT )+

= VΣ+UT

=

v1 · · · vr · · · vn

︸                           ︷︷                           ︸
n×n


1/σ1

. . .

1/σr

︸                       ︷︷                       ︸
n×m

u1 · · · ur · · · um


T

︸                              ︷︷                              ︸
m×m

⇒ A+A = (VΣ+UT )(UΣVT ) = I
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SVD
Least Square Problem

Let A is full-column rank matrix, if there is no solution of the matrix equation Ax = b, we
can find the best solution x+ such that Ax+ = p. For example,

Ax =

1 1
2 1
3 1


[
x1
x2

]
=


1
2
2

 = b (1)

(1) doesn’t have solution, multiply both sides by AT and project b into the column space of
A.

AT Ax+ =
[
14 6
6 3

] [
x̂1
x̂2

]
=

[
11
5

]
= ATb⇒ x+ =

[
1/2
2/3

]
(2)

⇒ Ax+ = p =


7/6
5/3
13/6

 ,e =

−1/6
1/3
−1/6


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SVD
Pseudoinverse and Least Square Problem

Figure: Pseudoinverse and Big picture

If we apply the pseudo inverse matrix, the solution is x+ = A+b even if A is not full rank.

Taehyeong Kim | SVD



8

SVD
Pseudoinverse and Least Square Problem

For example,

Ax =

1 1
2 1
3 1


[
x1
x2

]
=


1
2
2

 = b

Calculate pseudoinverse of A,

A+ =
[
−1/2 0 −1/2
−1/6 1/3 5/6

]

⇒ x+ = A+b =
[
−1/2 0 −1/2
−1/6 1/3 5/6

] 
1
2
2

 =
[
1/2
2/3

]
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Thank you!


	Review
	1.8.10 The SVD for Derivatives and Integrals
	Pseudoinverse
	Least Square Problem
	Pseudoinverse and Least Square Problem

