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Norms

Vector Norms

Definition (Norm)
The function || - || : C™ — R is called “norm” if || - || satisfies following
three conditions. For all vectors x,y and for all scalars @ € C,

1 [|x]| =0,]x]| =0 x=0,
2. |lx+yll < |||l + llyll (triangle inequality),

3. lax]| = |a|llx]|-
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Norms

Vector Norms

Some Norms

Loxlli = X lzl,

. 1/2
2. Ixllz = X |l“i|2) = VX'X,
3. [1xlleo = X |zl

=1

_—- 1/p
4. ||x||p = (21 |xZ|P) for 1 < p < oo,
1=
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Norms

Vector Norms

Weighted 2-Norm

I-llw:C* >R

m
Il w = (Z |wz-:ci|2)
=1

where Wis the diagonal matrix in which the ith entry is the weight
w; # 0.
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Norms

Matrix Norms Induced by Vector Norms

For m x n matrix A, we define induce matrix norm C'= || Al ») is

defined as the smallest number for vector norms || - ||, and || - ||
| Al (1)
”A”(m,n) = sup — = sup ”AX”(m)
x e C" ”X”(n) x e C"
x#0 ||X||(n) =
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Norms

Cauchy-Schwarz and Hoélder Inequalities

Holder Inequality

For any vectors x and y,
Xyl < Ixllpllyllq

Wherelsp,qsoosatisfy%+‘l1=1

Cauchy-Schwarz inequality
p = qg=2 in Holder Inequality

<"yl < lIx[l2llyll2
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Norms \
Bounding ||AB]|| in an Induced Matrix Norm y/ =
/

Let A be I X m matrix and B an m X n matrix, for any x € C",
NABx| 1y < 1Al ¢t,m) | BXI () < WAl (2,0 | Bl (om0, m) 1% ()

Therefore,
NABI (1,n) < 1Al m) | Bll ()
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Norms

General Matrix Norms

Matrix Norm
1. |A|l = 0, and [|A]| = 0 only if A =0,
2. [[A+ Bl < |All + 1Bl
3. [leA]l = |al|| All-

Frobenius norm

lAllF = (i Zn: Iaijlg)l/2

=1 j=1

" 1/2
= (Z ||aj||§)
=1

= \Jtr(A* A) = \Jtr(AA*)

.
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Norms

Invariance under Unitary Multiplication

Theorem
For any A € C™™ and unitary () € C"™™,

I1QAllz = llAll2,  [IQAllF = Il Al p.
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Functions of Matrices

Unitarily Invariant Norm

Unitarily invariant norm

A norm || - || is called unitarily invariant norm if || UA V]| = || A]| for all A
and for all unitary matrices U and V

v

Theorem [1, Cor.3.5.10]

For any unitary invariant norm,

IABCY < || All2l|BI[l| Cll2

Theorem [2, Thm.7.4.9.1] [3, Thm.5]

Let A, B € C™™ have SVDs with diagonal matrices £ 4, Xp € R™*",
where the diagonal elements are arranged in nonincreasing order. Then
[|[A— Bl > ||£4 — Zp|| for every unitarily invariant norm.
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Functions of Matrices

Unitarily Invariant Norm

Condition number
The condition number of 4 € C™" is k(A) = || A||||A~]. J

For any consistent norm and A € C™"
p(A) < [IA]l.

For any A € C™"™ and € > 0, there is a consistent matrix norm
(depending on A) such that ||A|| < p(A) + € [2, Lem.5.6.10.]
In particular, if p(A) < 1, there is a consistent matrix norm such that
1Al < 1.

p(A)<1:>Ili_r£oAk"=O
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