Mathematics, Pusan National University

NUMERICAL LINEAR ALGEBRA Lecture 3. Norms

Taehyeong Kim th_kim@pusan.ac.kr

August 2, 2020

Content

Vector Norms

Matrix Norms Induced by Vector Norms Cauchy-Schwarz and Hölder Inequalities Bounding $\|AB\|$ in an Induced Matrix Norm General Matrix Norms Invariance under Unitary Multiplication

Functions of Matrices

Unitarily Invariant Norm

Definition (Norm)

The function $\|\cdot\|:\mathbb{C}^m\to\mathbb{R}$ is called "norm" if $\|\cdot\|$ satisfies following three conditions. For all vectors \mathbf{x},\mathbf{y} and for all scalars $\alpha\in\mathbb{C}$,

- 1. $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0$,
- 2. $||x + y|| \le ||x|| + ||y||$ (triangle inequality),
- 3. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$.

Some Norms

- 1. $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$,
- 2. $\|\mathbf{x}\|_2 = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2} = \sqrt{\mathbf{x}^*\mathbf{x}},$
- 3. $\|\mathbf{x}\|_{\infty} = \sum_{i=1}^{m} |x_i|$,
- **4.** $\|\mathbf{x}\|_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}$ for $1 \le p < \infty$.

Weighted 2-Norm

$$\|\cdot\|_W:\mathbb{C}^n\to\mathbb{R}$$

$$\|\mathbf{x}\|_{W} = \left(\sum_{i=1}^{m} |w_{i}x_{i}|^{2}\right)$$

where W is the diagonal matrix in which the ith entry is the weight $w_i \neq 0$.

For $m \times n$ matrix A, we define **induce matrix norm** $C = ||A||_{(m,n)}$ is defined as the smallest number for vector norms $||\cdot||_m$ and $||\cdot||_n$

$$\begin{split} \|A\|_{(m,n)} &= \sup_{\mathbf{x} \in \mathbb{C}^n} \ \frac{\|A\mathbf{x}\|_{(m)}}{\|\mathbf{x}\|_{(n)}} = \sup_{\mathbf{x} \in \mathbb{C}^n} \ \|A\mathbf{x}\|_{(m)} \\ \mathbf{x} \neq 0 & \|\mathbf{x}\|_{(n)} = 1 \end{split}$$

Hölder Inequality

For any vectors \mathbf{x} and \mathbf{y} ,

$$|\mathbf{x}^*\mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

where $1 \leq p,\, q \leq \infty$ satisfy $\frac{1}{p} + \frac{1}{q} = 1$

Cauchy-Schwarz inequality

p=q=2 in Hölder Inequality

$$|\mathbf{x}^*\mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2$$

Let A be $l \times m$ matrix and B an $m \times n$ matrix, for any $\mathbf{x} \in \mathbb{C}^n$,

$$\|AB\mathbf{x}\|_{(l)} \leq \|A\|_{(l,m)} \|B\mathbf{x}\|_{(m)} \leq \|A\|_{(l,m)} \|B\|_{(m,n)} \|\mathbf{x}\|_{(n)}$$

Therefore,

$$||AB||_{(l,n)} \le ||A||_{(l,m)} ||B||_{(m,n)}$$

Matrix Norm

- 1. $||A|| \ge 0$, and ||A|| = 0 only if A = 0,
- 2. $||A + B|| \le ||A|| + ||B||$,
- 3. $\|\alpha A\| = |\alpha| \|A\|$.

Frobenius norm

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$
$$= \left(\sum_{j=1}^n ||a_j||_2^2\right)^{1/2}$$
$$= \sqrt{tr(A^*A)} = \sqrt{tr(AA^*)}$$

Theorem

For any $A \in \mathbb{C}^{m \times n}$ and unitary $Q \in \mathbb{C}^{m \times m}$,

$$||QA||_2 = ||A||_2, \quad ||QA||_F = ||A||_F.$$

Unitarily invariant norm

A norm $\|\cdot\|$ is called **unitarily invariant norm** if $\|\mathit{UA}\, V\| = \|A\|$ for all A and for all unitary matrices U and V

Theorem [1, Cor.3.5.10]

For any unitary invariant norm,

$$||ABC|| \le ||A||_2 ||B|| ||C||_2$$

Theorem [2, Thm.7.4.9.1] [3, Thm.5]

Let $A,B\in\mathbb{C}^{m\times n}$ have SVDs with diagonal matrices $\Sigma_A,\Sigma_B\in\mathbb{R}^{m\times n}$, where the diagonal elements are arranged in nonincreasing order. Then $\|A-B\|\geq \|\Sigma_A-\Sigma_B\|$ for every unitarily invariant norm.

Unitarily Invariant Norm

Condition number

The **condition number** of $A \in \mathbb{C}^{n \times n}$ is $\kappa(A) = ||A|| ||A^{-1}||$.

For any consistent norm and $A \in \mathbb{C}^{n \times n}$

$$\rho(A) \le \|A\|.$$

For any $A \in \mathbb{C}^{n \times n}$ and $\epsilon > 0$, there is a consistent matrix norm (depending on A) such that $||A|| \le \rho(A) + \epsilon$ [2, Lem.5.6.10.] In particular, if $\rho(A) < 1$, there is a consistent matrix norm such that ||A|| < 1.

$$\rho(A) < 1 \Rightarrow \lim_{k \to \infty} A^k = 0$$

References I

- [1] Horn, Roger A., Roger A. Horn, and Charles R. Johnson. Topics in matrix analysis. Cambridge university press, 1994.
- [2] Horn, Roger A., and Charles R. Johnson. Matrix analysis. Cambridge university press, 2012.
- [3] Mirsky, Leon. "Symmetric gauge functions and unitarily invariant norms." The quarterly journal of mathematics 11.1 (1960): 50-59.

