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Introduction

Here are factorizations of A and T with new and important properties :

Properties

Nonnegative Matrices min ‖A −UV ‖2F
with U ≥ 0 and V ≥ 0

Sparse and Nonnegative min ‖A −UV ‖2F + λ‖UV ‖N
with U ≥ 0 and V ≥ 0

CP Tensor Decomposition min ‖T −
R∑
i=1

ai ⊗ bi ⊗ ci ‖

To compute a factorization A = UV , we introduce a simple alternating iteration.
Update U with V fixed, then update V with U fixed.
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Nonnegative Matrix Factorization (NMF)

The goal of NMF
Approximating a nonnegative matrix A ≥ 0 by a lower rank product UV of two nonnegative
matrices U ≥ 0 and V ≥ 0.

NMF and SPCA
NMF Find nonnegative matrices U and V so that A ≈ UV

SPCA Find sparse low rank matrices B and C so that A ≈ BC
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Text Mining

We can use NMF to discover new characteristics of data.

TF-IDF
TF(Term Frequency) : The weight of a term that occurs in a document is simply
proportional to the term frequency.
DF(Document Frequency) : The specificity of a term can be quantified as an inverse
function of the number of documents in which it occurs.
TF-IDF (Term Frequency Inverse Document Frequency) :

TF
DF
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Text Mining

Example
Suppose that the matrix V made up of book titles and words created using TF-IDF is as
follows :

V =

협상 스타트업 투자 비즈니스 데이터

협상의법칙 0.9 0 0.3 0.8 0
스타트업 0 0.8 0.7 0.9 0.3
빅데이터 0 0 0.5 0 0.8
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Text Mining

Example
Then the matrices W and H such that WH ≈ V are

W =

특징1 특징2 특징3
협상의법칙 0 1.2410 0
스타트업 1.4248 0 0
빅데이터 0 0 0.9434

H =

협상 스타트업 투자 비즈니스 데이터

특징1 0 0.5615 0.4913 0.6317 0.2106
특징2 0.7252 0 0.2417 0.6447 0
특징3 0 0 0.5300 0 0.8480

W is called the weight matrix and H is called the feature matrix.
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Facial Feature Extraction

For example, there are 20 45 × 40 face images like this:

Figure: 45 × 40 face images

If we make a vector by connecting the pixel brightness values in an image, we can think of
each face image as a 45 × 40 = 1800 dimensional vector. Now, if we perform PCA with
these 1800 dimensional point data, we can obtain the same number of principal
component vectors as the number of dimensions of the data. Eigenface is the
reinterpretation of the principal component vectors thus obtained as images.
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Facial Feature Extraction

Figure: reconstruction using k eigenfaces

If we use a large number of eigenfaces, we can see approximate results that are almost
similar to those of the original face, but as k decreases, the unique facial features of the
individual disappear and the common facial features remain.
It can be interpreted in various ways as dimension reduction, data compression, and noise
reduction.
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Facial Feature Extraction

By using this, we can detect face.
1. After collecting many face samples, get their eigenfaces and select only the first k

eigenfaces.
2. When the test image x comes in, calculate how close it is to the original image x

when x is reconstruction using only k eigenfaces.
3. If x is perfectly approximated by combining k eigenfaces, x is very likely to be a face.
4. Another criterion of judgement is how close xk is to the average face.
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Optimality Conditions for Nonnegative U and V

Given A ≥ 0, here are the conditions for U ≥ 0 and V ≥ 0 to minimize ‖A`UV ‖2F

Y = UVVT − AVT ≥ 0 with Yi jor Ui j = 0 for all i, j

Z = UTUV −UT A ≥ 0 with Zi jor Vi j = 0 for all i, j

Those last conditions already suggest that U and V may turn out to be sparse.
The calculation will be shown in chapter 3.
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Sparse Principal Components

Multiple Linear Regression

arg min
w,b

1
n

n∑
i=1
(yi − ŷi)

2 = arg min
w,b

MSE

where ŷ = w0x1 + · · · + wpxp + b

LASSO
Lasso is simply a linear regression method with an l1-norm penalty.

arg min
w,b

1

n

n∑
i=1

(yi − ŷi)
2 + α

m∑
j=1

|wi | = arg min
w,b

MSE + penalty

α is a parameter that controls the effect of the penalty.
It can create a model that avoids overfitting.
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Sparse Principal Components

LASSO

Minimize ‖Ax − b‖2 + λ
n∑

k=1

|xk |

Elastic net

Minimize ‖Ax − b‖22 + λ‖x‖1 + β‖x‖
2
2
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Tensors

Generally tensor is multi-array such that A = (ai1 · · ·im ) ai1 · · ·im ∈ F : field where ij = 1, . . . ,nj ,
for j = 1, . . . ,m. Let’s take an example with a matrix we know well.

A =
[
1 2 3
4 5 6

]
Matrix A = (ai1i2 ) is tensor that i1 = 1,2, i2 = 1,2,3. m is order of tensor, (n1, . . . ,nm) is
dimension of tensor. Similar to the size of matrix A is 2 × 3 = 6, the size of tensor A is
n1 × · · · × nm. If n1 = · · · = nm, A is mth order n-dimensional tensor.
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Tensors

Figure: vector, matrix and tensor
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Example 1 : A Color Image is a Tensor with 3 Slices

Figure: RGB image data and tensor

15 / 33







16

Example 2 : The Derivative ∂w/∂A of w = Av

Let A be a weight matrix for deep learning. That matrix multiplies a vector v to produce
w = Av. In matrix multiplication, we know that row j of A has no effect on row i of w = Av.
So the derivative formula includes the symbol δi j . The derivatives of the linear function
w = Av with respect to the weights Ajk are in T :

Ti jk =
∂wi

∂Ajk
= vkδi j

This tensor T is interest:
1. The slices k = constant are multiples vk of the identity matrix.
2. The key function of deep learning connects each layer of a neural net to the next

layer. If one layer contains a vector v, the next layer contains the vector w = (Av + b)+.
A is a matrix of weights. We optimize those weights to match the training data. So the
derivatives of the loss function L will be zero for the optimal weights.

16 / 33

























17

Example 3 : The Joint Probability Tensor

Suppose we measure age a in years and height h and weight w. We put N children into I
age groups and J height groups and K weight groups. Then all children will be in the
(i, j, k) group. For that random child,

Probability of age group i =
ai
N

height group j =
hj

N
weight group k =

wk

N

This naturally leads to joint probabilities pi jk =
number of i age, j height, k weight children

N .
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Tensor Multiplications

Definition
Tensor Outer Product We use ⊗ to denote tensor outer product; that is for any two tensors
A ∈ Tm,n and B ∈ Tp,n,

A ⊗B =
(
ai1 · · ·im bim+1 · · ·im+n

)
(1)
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Tensor Multiplications

symmetric rank-one tensor

x⊗k ≡ x ⊗ · · · ⊗ x︸       ︷︷       ︸
k times

=
(
xi1 · · · xik

)
∈ Tk ,n (2)

Obviously, x⊗k ∈ Sk ,n, and it called a symmetric rank-one tensor when x , 0.

rank-one tensor

More generally, let x(i) =
(
x(i)1 , . . . , x

(i)
n

)T
∈ Rn for i ∈ [m] and α ∈ R. Then

αx(1) ⊗ x(2) ⊗ · · · ⊗ x(m) is a tensor in Tm,n with isd (i1, . . . , im)th entry as αx(1)i1
· · · x(m)im

. Such a
tensor (not necessarily symmetric) is called a rank-one tensor in Tm,n.
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Tensor Multiplications

Definition (k-Mode Product)
For any A ∈ Tm,n and any P = (pi j) ∈ Rp×n, and for any given k ∈ [m], the k-mode product
of A and P, denoted as A ×k P, is defined by

(A ×k P)i1 · · ·ik−1 jik+1 · · ·im =
n∑

ik=1

ai1 · · ·ik−1ik ik+1 · · ·im pi,ik ,

∀il ∈ [n] , l ∈ [m], l , k,∀ j ∈ [p]

(3)

By this product, the size of tensor is changed from n × · · · × n to n × · · · × p × · · · × n.
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Tensor Multiplications

linear operator Pm(·)

If we do the k-mode product of A and P for all possible k ∈ [n] as

Pm (A ) = A ×1 P ×2 · · · ×m P

More specifically,

Pm(A ) =

(
n∑

i1 ,...,im=1

ai1 ,...,im pj1i1 · · · pjmim

)
∈ Tm,p,

∀A =
(
ai1 ,...,im

)
∈ Tm,n.

(4)
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Tensor Multiplications

For xT = (x1, . . . , xn), the following frequently used notations are given as below:

A xm−2 ≡ A ×3 x
T ×4 · · · ×m xT =

(
n∑

i3 ,...,im=1

ai ji3 · · ·im xi3 · · · xim

)
∈ Rn×n (5)

A xm−1 ≡ A ×2 x
T ×3 · · · ×m xT =

(
n∑

i2 ,...,im=1

aii2 · · ·im xi2 · · · xim

)
∈ Rn (6)

A xm ≡ A ×1 x
T ×2 · · · ×m xT =

(
n∑

i1 ,...,im=1

ai1 · · ·im xi1 · · · xim

)
∈ R (7)
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Tensor Multiplication

Definition (Inner Product)
For any two tensor A =

(
ai1 · · ·im

)
,B =

(
bi1 · · ·im

)
∈ Tm,n, the inner product of A and B,

denoted as A •B, is defined as

A •B =
n∑

i1 ,...,im=1

ai1 · · ·im bi1 · · ·im . (8)

Frobenious norm of A

‖A ‖F =
√

A •A

23 / 33





















24

Tensor Multiplication
Hadamard Product

Definition (Hadamard Product)
For any two tensor A =

(
ai1 · · ·im

)
,B =

(
bi1 · · ·im

)
∈ Tm,n, the Hadamard product of A and B,

denoted as A ◦B, is defined as

A ◦B =
(
ai1 · · ·im bi1 · · ·im

)
∈ Tm,n (9)
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The Norm and Rank of a Tensor

Consider 3 dimension tensor T = (ti jk). Frobenius norm of a tensor : Add all T 2
i jk

to find
‖T ‖. The theory of tensors is still part of linear algebra (or perhaps multilinear algebra).
Just like a matrix, a tensor can have two different roles in science and engineering :

1. A tensor can multiply vectors, matrices, or tensors. Then it is a linear operator.
2. A tensor can contain data. Its entries could give the brightness of pixels in an image.

A color image is 3-way, stacking RGB. A color video will be a 4-way tensor.
The rank of a tensor is the smallest number of rank-1 tensors that add to T .
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The Norm and Rank of a Tensor

Little difference between matrix and tensor
Consider the tensor T such that

T = u ⊗ u ⊗ v + u ⊗ v ⊗ u + v ⊗ u ⊗ u

Rank of this tensor seems like 3, it is the limit of these rank-2 tensors Tn when n→∞:

Tn = n
(
u +

1

n
v

)
⊗

(
u +

1

n
v

)
⊗

(
u +

1

n
v

)
− nu ⊗ u ⊗ u

Because of the Eckart-Young theorem, the closest approximation to A by a matrix of rank
k is fixed. There have been many attempts to decompose tensors, and here are two
tensor decompositions. CP and Tucker decomposition.
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The CP Decomposition of a Tensor

CP Decomposition
Let A ∈ Tm,n. If there exist a positive integer r, scalars αj for j ∈ {1, . . . ,r}, vectors x(j ,i)

with ‖x(j ,i)‖2 = 1 for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,r} such that

A =
r∑
j=1

αjx
(j ,1) ⊗ · · · ⊗ x(j ,m),

then this summation is said to be a canonical decomposition/parallel factor
decomposition(CANDECOMP/PARAFAC decomposition) of A .

It looks similar to SVD but is different. In general, there are many differences between a
matrix and a tensor. From the viewpoint of computability, the problem is NP-hard.
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The CP Decomposition of a Tensor

We will consider a 3-order tensor T .

CP decomposition of T

T ≈ a1 ⊗ b1 ⊗ c1 + · · · + aR ⊗ bR ⊗ cR

Here is alternating algorithm by using the three matricized forms T1,T2,T3.

Minimize‖T1 − A(C � B)T ‖2F
(a) Fix B,C and vary A,
(b) Fix A,C and vary B,
(c) Fix A,B and vary C
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Matricized Form of a Tensor T

Suppose A,B,C are the matrices whose columns are the a’s and b’s and c’s. And suppose
that the dimension of T is (I, J,K) Then each size of matrices is I × R, J × R, K × R. We
matricize the tensor T to compute the CP decomposition.

Example
Let I = 3, J = 4,K = 2,

I × JK = 3 × 8 T1 =


1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24


J × IK = 4 × 6 T2 =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


K × I J = 2 × 12 T3 =

[
1 2 3 4 5 · · · 9 10 11 12
13 14 15 16 17 · · · 21 22 23 24

]
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The Khatri-Rao Product A � B

Khatri-Rao
Column j of A � B = (column j of A) ⊗ (column j of B)

Summary
We are slicing T in three directions and placing the slices next to each other in the three
matrices T1,T2,T3. Then we look for three matrices M1,M2,M3 that give us nearly correct
equations by ordinary matrix multiplication :

T1 ≈ AM1 T2 ≈ BM2 T3 ≈ CM3.

⇒ T1 ≈ A(C � B)T T2 ≈ B(C � A)T T3 ≈ C(B � A)T .
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Computing the CP Decomposition of T

Recall
Minimize‖T1 − A(C � B)T ‖2F

(a) Fix B,C and vary A,
(b) Fix A,C and vary B,
(c) Fix A,B and vary C

The pseudoinverse of our coefficient matrix C � B can be expressed as:

(C � B)+ = [(CTC) ◦ (BT B)]+(C � B)T

⇒ A = T1(C � B)[(CTC) ◦ (BT B)]+
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The Tucker Decomposition

Tucker decomposition
Let A ∈ Tm,n, If there exist positive integers ri for i ∈ {1, . . . ,m}, scalars gi1 · · ·im , and vectors
x(j ,i j ) with ‖x(j ,i j )‖2 = 1 for j ∈ {1, . . . ,m} and i ∈ {1, . . . ,n}such that

A =
n∑

i1=1

· · ·

n∑
im=1

gi1 · · ·imx
(1,i1) ⊗ · · · ⊗ x(m,im),

then this summation is said to be a Tucker decomposition of A and the tensor
G = (gi1 · · ·im ) is called the core tensor of A .

Let Xj = [x
(1, j) · · · x(rj , j)] for all j. Then tucker decomposition is related to the k-mode

product as follows:
A = G ×1 X1 ×2 · · · ×m Xm.
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The Tucker Decomposition

Consider the 3-order tensor T .

Tucker decomposition of T

T ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gqpr ap ⊗ bq ⊗ cr

Similar to the CP decomposition, we can use matricization and tensor product instead of
the Khatri-Rao product.

Tucker

T1 ≈ AG1(C ⊗ B)T T2 ≈ BG2(C ⊗ A)T T3 ≈ CG3(B ⊗ A)T
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