Mathematics, Pusan National University

NUMIRICAL LINEAR ALGEBRA Projectors

Taehyeong Kim th_kim@pusan.ac.kr

August 24, 2020

Content

Projectors

Projectors
Complementary Projectors
Orthogonal Projectors
Projection with an Orthonormal Basis
Projection with an Arbitrary Basis

Projector in other books

In Matrix Computations
In Matrix analysis and applied linear algebra
In Linear algebra and its application
In Functions of Matrices
In Matrix analysis

Projectors[1]

- Projectors
- Complementary Projectors
- Orthogonal Projectors
- Projection with an Orthonormal Basis
- Projection with an Arbitrary Basis

Definition

A projector is a square matrix *P* that satisfies

$$P^2 = P. (1)$$

For $\mathbf{v} \in range(P)$, $\mathbf{v} = P\mathbf{x}$ for some \mathbf{x}

$$P\mathbf{v} = P^2\mathbf{v} = P\mathbf{x} = \mathbf{v}.$$

This means that $P\mathbf{v} - \mathbf{v} \in null(P)$.

Figure: An oblique projection

Projectors Complementary Projectors

If P is a projector, I - P is also a projector,

$$(I - P)^2 = I - 2P - P^2 = I - P$$

The matrix I - P is called the complementary projector to P.

$$range(I - P) = null(P) \tag{2}$$

Proof.

$$\forall \mathbf{v} \in null(P), (I - P)\mathbf{v} = \mathbf{v} - P\mathbf{v} = \mathbf{v}. \Rightarrow \mathbf{v} \in range(I - P).$$

 $\forall \mathbf{v}, (I - P)\mathbf{v} = \mathbf{v} - P\mathbf{v} = 0 \Rightarrow \mathbf{v} \in null(P).$

Also, it is easy to see that null(I - P) = range(P). And $range(P) \cap null(P) = 0$

3/27

Figure: The Big Picture of Linear Algebra[2]

Projectors Orthogonal Projectors

Figure: An orthogonal projection

Let $S_1 = range(P)$, $S_2 = null(P)$, P is orthogonal projector if $S_1 \perp S_2$.

Theorem

A projector P is orthogonal if and only if $P = P^*$

Proof.

If $P = P^*$, then the inner product between a vector $P\mathbf{x} \in S_1$ and a vector $(I - P)\mathbf{y} \in S_2$ is zero:

$$\mathbf{x}^* P^* (I - P)\mathbf{y} = \mathbf{x}^* (P - P^2)\mathbf{y} = 0$$

Thus the projector is orthogonal.

Figure: An orthogonal projection

Proof (Cont.)

We use SVD to show the "only if". Suppose that P is orthogonal. And S_1 has dimension n. Then an SVD of P can be expressed as follows. Let $\{\mathbf{q}_1,\ldots,\mathbf{q}_m\}$ be an orthogonal basis of \mathbb{C}^m , where $\{\mathbf{q}_1,\ldots,\mathbf{q}_n\}$ is a basis of S_1 and $\{\mathbf{q}_{n+1},\ldots,\mathbf{q}_m\}$ is a basis of S_2 . For $j\leq n$, $P\mathbf{q}_j=\mathbf{q}_j$, and for j>n, $P\mathbf{q}_j=0$. Let Q be the unitary matrix such that jth column is \mathbf{q}_j .

Projectors Orthogonal Projectors

Figure: An orthogonal projection

Proof (Cont.)

$$PQ = \begin{bmatrix} q_1 & \cdots & q_n & 0 & \cdots \end{bmatrix}$$

so that

$$Q^*PQ = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \end{bmatrix} = \Sigma$$

a diagonal matrix with ones in the first n entries and zeros everywhere else.

Projectors Orthogonal Projectors

Figure: An orthogonal projection

Proof.

Thus we have constructed a singular value decomposition of *P*:

$$P = Q\Sigma Q^*$$

Since
$$P^* = (Q\Sigma Q^*)^* = Q^*\Sigma^*Q = Q\Sigma Q^* = P$$
, $P = P^*$

5/2

Since an orthogonal projector has some singular values equal to zero, We will use reduced SVD. We obtain the marvelously simple expression

$$P = \hat{Q}\hat{Q}^* \tag{3}$$

where the columns of \hat{Q} are orthonormal. Let $\{\mathbf{q}_1,\ldots,\mathbf{q}_n\}$ be an any set n orthogonal vectors in \mathbb{C}^m , and \hat{Q} be the corresponding $m \times n$ matrix. Consider \mathbf{v} can be expressed as

$$\mathbf{v} = \mathbf{r} + \sum_{i=1}^{n} (\mathbf{q}_i \mathbf{q}_i^*) \mathbf{v}$$

So the map

$$\mathbf{v} \mapsto \sum_{i=1}^{n} (\mathbf{q}_{i} \mathbf{q}_{i}^{*}) \mathbf{v} \tag{4}$$

is an orthogonal projector onto range(P).

It can be written $y = \hat{Q}\hat{Q}^*v$:

$$y$$
 \hat{Q} \hat{Q}^* v

The complement of an orthogonal projector is also an orthogonal projector. (: $I - \hat{Q}\hat{Q}^*$ is hermitian.)

The complement projects onto the space orthogonal to $range(\hat{Q})$.

Example

An important special case of orthogonal projectors is the rank-one orthogonal projector that isolates the component in a single direction ${\bf q}$, which can be written

$$P^* = qq^*. (5)$$

These are the pieces from which higher-rank projectors can be made, as in (4). Their complements are the rank m - 1 orthogonal projectors that eliminate the component in the direction of q:

$$P_{\perp \mathbf{q}} = I - \mathbf{q} \mathbf{q}^*.$$

For arbitrary nonzero vectors a, the analogous formulas are

$$P_{\mathbf{a}} = \frac{\mathbf{a}\mathbf{a}^*}{\mathbf{a}^*\mathbf{a}}, \ P_{\perp a} = I - \frac{\mathbf{a}\mathbf{a}^*}{\mathbf{a}^*\mathbf{a}}.$$
 (6)

Suppose that the subspace is spanned by the linearly independent vectors $\{a_1, \ldots, a_n\}$, and let A be the $m \times n$ matrix whose jth column is a_j . In passing from v to its orthogonal projection $v \in range(A)$, the difference v - v must be orthogonal to range(A).

$$\mathbf{a}_{j}^{*}(\mathbf{y} - \mathbf{v}) = 0$$
 for every j

$$\mathbf{y} \in range(A) \Rightarrow \exists \mathbf{x} \text{ such that } \mathbf{y} = A\mathbf{x}$$

$$\Rightarrow \mathbf{a}_{j}^{*}(A\mathbf{x} - \mathbf{v}) = 0 \text{ for every } j$$

$$\Rightarrow A^{*}(A\mathbf{x} - \mathbf{v}) = 0$$

$$\Rightarrow A^{*}A\mathbf{x} = A^{*}\mathbf{v}$$

$$\Rightarrow \mathbf{x} = (A^{*}A)^{-1}A^{*}\mathbf{v}$$
(7)

$$\Rightarrow P = A(A^*A)^{-1}A^*(\because \mathbf{y} = A\mathbf{x}) \tag{8}$$

Projector in other books

- ► Matrix Computations [3]
- Matrix analysis and applied linear algebra [4]
- ► Linear algebra and its application [5]
- Functions of Matrices [6]
- Matrix Analysis [7]

Projectors In Matrix Computations

There are several important orthogonal projections associated with the singular value decomposition. Suppose $A = U\Sigma V^T \in \mathbb{R}^{m\times n}$ is SVD of A and that r = rank(A). If we have the U and V partitionings

$$U = \begin{bmatrix} U_r & \tilde{U}_r \\ r & m-r \end{bmatrix}, \quad V = \begin{bmatrix} V_r & \tilde{V}_r \\ r & n-r \end{bmatrix}$$

Then

$$\begin{split} &V_r V_r^T = \text{ projection on to } null(A)^\perp = range(A^T) \\ &\tilde{V}_r \tilde{V}_r^T = \text{ projection on to } null(A) \\ &U_r U_r^T = \text{ projection on to } range(A) \\ &\tilde{U}_r \tilde{U}_r^T = \text{ projection on to } range(A)^\perp = null(A^T) \end{split}$$

Projectors

Let \mathcal{X} and \mathcal{Y} be complementary subspaces of a vector space \mathcal{V} so that each $\mathbf{v} \in \mathcal{V}$ can be uniquely resolved as $\mathbf{v} = \mathbf{x} + \mathbf{y}$, where $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$. The unique linear operator \mathbf{P} defined by $\mathbf{P}\mathbf{v} = \mathbf{x}$ is called the *projector onto* \mathcal{X} *along* \mathcal{Y} , and \mathbf{P} has the following properties.

•
$$\mathbf{P}^2 = \mathbf{P}$$
 (\mathbf{P} is idempotent). (5.9.8)

•
$$I - P$$
 is the complementary projector onto \mathcal{Y} along \mathcal{X} . (5.9.9)

•
$$R(\mathbf{P}) = \{\mathbf{x} \mid \mathbf{P}\mathbf{x} = \mathbf{x}\}$$
 (the set of "fixed points" for \mathbf{P}). (5.9.10)

•
$$R(\mathbf{P}) = N(\mathbf{I} - \mathbf{P}) = \mathcal{X} \text{ and } R(\mathbf{I} - \mathbf{P}) = N(\mathbf{P}) = \mathcal{Y}.$$
 (5.9.11)

• If $\mathcal{V} = \Re^n$ or \mathcal{C}^n , then **P** is given by

$$\mathbf{P} = \begin{bmatrix} \mathbf{X} \mid \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \mid \mathbf{Y} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{X} \mid \mathbf{Y} \end{bmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{bmatrix} \mathbf{X} \mid \mathbf{Y} \end{bmatrix}^{-1}, \quad (5.9.12)$$

where the columns of \mathbf{X} and \mathbf{Y} are respective bases for \mathcal{X} and \mathcal{Y} . Other formulas for \mathbf{P} are given on p. 634.

Figure: Projectors in Matrix analysis and applied linear algebra

Angle between Complementary Subspaces.

Let angle of nonzero vectors ${\bf u}$ and ${\bf v}$, denoted as θ , is defined to be the number $0 \le \theta \le \pi/2$ such that

$$\cos \theta = \frac{\mathbf{v}^T \mathbf{u}}{\|\mathbf{v}\|_2 \|\mathbf{u}\|_2}.$$

How about "angle between subspaces of \mathbb{R}^n "?

Consider \mathcal{R} and \mathcal{N} such that the nonzero subspaces and $\mathbb{R}^n = \mathcal{R} \oplus \mathcal{N}$.

The angle between \mathcal{R} and \mathcal{N} is defined to be the number $0 \le \theta \le \pi/2$ such that

$$\cos \theta = \max_{\substack{\mathbf{u} \in \mathcal{R} \\ \mathbf{v} \in \mathcal{N}}} \frac{\mathbf{v}^T \mathbf{u}}{\|\mathbf{v}\|_2 \|\mathbf{u}\|_2} = \max_{\substack{\mathbf{u} \in \mathcal{R}, \mathbf{v} \in \mathcal{N} \\ \|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1}} \mathbf{v}^T \mathbf{u}$$

This is a good definition, but it's not easy to compute.

Angle between Complementary Subspaces.

Let P be the projector such that $range(P) = \mathcal{R}$ and $null(P) = \mathcal{N}$. Recall the matrix 2-norm of P is

$$||P||_2 = \max_{\|\mathbf{x}\|_2 = 1} ||P\mathbf{x}||_2$$

In other words, $\|P\|_2$ is the length of a longest vector in the image of the unit sphere under transformation by P. Consider the situation in \mathbb{R}^3 . The image of the unit sphere under P is obtained by projecting the sphere onto \mathcal{R} along lines parallel to \mathcal{N} .

Angle between Complementary Subspaces.

The norm of a longest vector \mathbf{v} on this ellipse equals the norm of P. That is, $\|v\|_2 = \max_{\|x\|_2=1} \|Px\|_2 = \|P\|_2$.

Therefore,

$$\sin \theta = \frac{\|\mathbf{x}\|_2}{\|\mathbf{v}\|_2} = \frac{1}{\|\mathbf{v}\|_2} = \frac{1}{\|P\|_2}$$

There is example of projection(projector) matrix.

Least-Squares Fitting of Data

The cost of producing t books like this one is nearly linear, $\mathbf{b} = c + d\mathbf{t}$, with editing and typesetting in c and then printing and binding in d. c is the set-up cost and d is the cost for each additional book.

$$c + dt_1 = b_1$$

$$c + dt_2 = b_2$$

$$\vdots$$

$$c + dt_m = b_m$$

$$\begin{vmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{vmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad or \quad A\mathbf{x} = \mathbf{b}$$

The best solution (\hat{c}, \hat{d}) is the \hat{x} that minimizes the squared error E^2 :

Minimize
$$E^2 = \|\mathbf{b} - A\mathbf{x}\| = (b_1 - C - Dt_1)^2 + \dots + (b_m - C - Dt_m)^2$$
.

Example

Let $(t_1, b_1) = (-1, 1), (t_2, b_2) = (1, 1)$ and $(t_3, b_3) = (2, 3)$, then

$$A\mathbf{x} = \mathbf{b}$$
 is $c + d = 1$ or $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$

Since there is no straight line through all three points, they are solved by least squares:

$$A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b} \quad \Rightarrow \quad \begin{bmatrix} 3 & 2\\ 2 & 6 \end{bmatrix} \begin{bmatrix} \hat{c}\\ \hat{d} \end{bmatrix} = \begin{bmatrix} 5\\ 6 \end{bmatrix}$$

The best solution is $\hat{c}=\frac{9}{7},\hat{d}=\frac{4}{7}$ and the best line is $\frac{9}{7}+\frac{4}{7}t$. The line $\frac{9}{7}+\frac{4}{7}t$ has $\frac{5}{7},\frac{13}{7},\frac{17}{7}$ at -1,1,2. This vector is the projection. $(P=A(A^TA)^{-1}A^T)$

Figure: Example of straight-line approximation matches the projection p of b

The pseudoinverse $X \in \mathbb{C}^{m \times m}$ of $A \in \mathbb{C}^{m \times n}$ is the unique matrix satisfying the four Moore–Penrose conditions:

(i)
$$AXA = A$$
, (ii) $XAX = X$,
(iii) $AX = (AX)^*$, (iv) $XA = (XA)^*$.

The pseudoinverse is denoted by A^+ . Let S be a subspace of \mathbb{C}^m , and let $P_S \in \mathbb{C}^{m \times m}$.

- ▶ P_S is is the projector onto S if $range(P_S) = S$ and $P_S^2 = PS$. The projector is not unique.
- ▶ P_S is is the orthogonal projector onto S if $range(P_S) = S$ and $P_S^2 = P_S$ and $P_S^* = P_S$. The orthogonal projector is unique. In terms of the pseudoinverse, $P_{range(A)} = AA^+$ and $P_{range(A^*)} = A^+A$.

Theorem

Let $A \in M_n$ be given. There exists a unique monic polynomial $q_A(t)$ of minimum degree that annihilates A. The degree of $q_A(t)$ is at most n. If p(t) is any monic polynomial such that p(A) = 0, then $q_A(t)$ divides p(t), that is, $p(t) = h(t)q_A(t)$ for some monic polynomial h(t).

Definition

Let $A \in M_n$ be given. The unique monic polynomial $q_A(t)$ of minimum degree that annihilates A is called the minimal polynomial of A.

Example

Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then the minimal polynomial of A is $q_A(t) = t^2 - 1$.

Definition

Thought of as a formal polynomial in t, the characteristic polynomial of $A \in Mn$ is

$$p_A(t) = \det(tI - A)$$

We refer to the equation $p_A(t) = 0$ as the characteristic equation of A.

Example

Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then the characteristic polynomial of A is $p_A(t) = t^3 - t^2 - t + 1$.

And since $p_A(A) = 0$, $p_A(t) = (t - 1)(t^2 - 1) = h(t)q_A(t)$ where h(t) = t - 1 and $q_A(t) = t^2 - 1$.

Theorem

Let $A \in M_n$ be given. There is a nonsingular $S \in M_n$, positive integers q and n_1, \ldots, n_q with $n_1 + \cdots + n_q = n$ and scalars $\lambda_1, \ldots, \lambda_q \in \mathbb{C}$ such that

$$A = S \begin{bmatrix} J_{n_1}(\lambda_1) & & & \\ & \ddots & & \\ & & J_{n_q}(\lambda_q) \end{bmatrix} S^{-1}$$

$$(10)$$

The Jordan matrix $J_A = J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_q}(\lambda_q)$ is uniquely determined by A up to permutation of its direct summands. If A is real and has only real eigenvalues, then S can be chosen to be real.

Fact : J_A is similar to A.(has same eigenvalues)

Projectors In Matrix analysis

We may assume that $J = J_{m_1}(\lambda) \oplus \cdots \oplus J_{m_p}(\lambda) \oplus \hat{J}$, in which the Jordan matrix \hat{J} is a direct sum of Jordan blocks with eigenvalues different from λ . Then

$$J - \lambda I = (J_{m_1}(\lambda) - \lambda I) \cdots (J_{m_p}(\lambda) - \lambda I) \oplus (\hat{J} - \lambda I)$$
$$= J_{m_1}(0) \oplus \cdots \oplus J_{m_p}(0) \oplus (\hat{J} - \lambda I)$$

is similar to $A - \lambda I$. Moreover, $(J - \lambda I)^k$ is similar to $(A - \lambda I)^k$. And rank is similarity invariant,

$$rank(A - \lambda I)^k = rank(J - \lambda I)^k = rankJ_{m_1}(0)^k + \dots + rankJ_{m_p}(0)^k + rank(\hat{J} - \lambda I)^k$$
 (11)

Now let $A \in M_n$, let $\lambda \in \mathbb{C}$, let k be a positive integer, let

$$r_k(A,\lambda) = rank(A - \lambda I)^k, \quad r_0(A,\lambda) := n$$
 (12)

and define

$$w_k(A,\lambda) = r_{k-1}(A,\lambda) - r_k(A,\lambda), \quad w_1(A,\lambda) := n - r_1(A,\lambda)$$
(13)

Using (11) and (12), we can explain the algebraic meaning of $w_k(A, \lambda)$:

$$w_k(A,\lambda) = (rankJ_{m_1}(0)^{k-1} - rankJ_{m_1}(0)^k) + \dots + (rankJ_{m_p}(0)^{k-1} - rankJ_{m_p}(0)^k)$$

$$= (1 \text{ if } m_1 \ge k) + \dots + (1 \text{ if } m_p \ge k)$$

$$= \text{number of blocks with eigenvalue } \lambda \text{ that have size at least } k$$

$$(14)$$

Definition

The Weyr characteristic of $A \in M_n$ associated with $\lambda \in \mathbb{C}$ is

$$w(A, \lambda) = (w_1(A, \lambda), \dots, w_q(A, \lambda))$$

in which the sequence of integers $w_i(A, \lambda)$ is defined by (13)

Definition

Let $\lambda \in \mathbb{C}$ be given, let $q \geq 1$ be a given positive integer, let $w_1 \geq \cdots \geq w_q \geq 1$ be a given nonincreasing sequence of positive integers, and let $w = (w_1, \ldots, w_q)$. The Weyr block $W(w,\lambda)$ associated with λ and w is the upper triangular $q \times q$ block bidiagonal matrix

$$W(w,\lambda) = \begin{bmatrix} \lambda I_{w_1} & G_{w_1,w_2} & & & & \\ & \lambda I_{w_2} & G_{w_2,w_3} & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & G_{w_{q-1},w_q} \\ & & & & I_{w_q} \end{bmatrix}$$
 (15)

in which
$$G_{w_i,w_j} = \begin{bmatrix} I_{w_j} \\ 0 \end{bmatrix} \in M_{w_i,w_j}, \quad 1 \leq i < j$$

23

For any $A \in M_n$, let q be the index of an eigenvalue λ of A, let $w_k = w_k(A, \lambda)$, k = 1, 2, ... be the Weyr characteristic of A associated with λ . Define the Weyr block of A associated with the eigenvalue λ to be

$$W_A(\lambda) = W(w(A, \lambda), \lambda)$$

Theorem

Let $\lambda_1, \ldots, \lambda_d$ is be distinct eigenvalues of $A \in M_n$.

- ▶ There is a nonsingular $S \in M_n$ and there are Weyr blocks $W_1, ..., W_d$ such that
- $A = S(W_1 \oplus \cdots \oplus W_d)S^{-1}$
- ▶ The Weyr matrix $W_1 \oplus \cdots \oplus W_d$ is similar to A.

where $W_j = W_A(\lambda_j)$ for each j = 1, ..., d.

Let $W_A = W_A(\lambda_1) \oplus \cdots \oplus W_A(\lambda_d)$, then $A = SW_AS^{-1}$ is Weyr canonical form of A.

Example

Consider the Jordan matrix $J = J_3(\lambda) \oplus J_2(\lambda)$, then $w_J(J,\lambda) = 2,2,1$:

$$J = \begin{bmatrix} \lambda & 1 & 0 & & & \\ 0 & \lambda & 1 & & & \\ \hline & 0 & 0 & \lambda & & & \\ \hline & & & & \lambda & 1 \\ \hline & & & & 0 & \lambda \end{bmatrix} \Rightarrow W_J(\lambda) = \begin{bmatrix} \lambda & 0 & 1 & 0 & \\ 0 & \lambda & 0 & 1 & \\ \hline & & & \lambda & 0 & 1 \\ \hline & & & & 0 & \lambda & 0 \\ \hline & & & & & \lambda \end{bmatrix}$$

The eigenvalue of J is $(\lambda, \lambda, \lambda, \lambda, \lambda)$, considering multiplicity and there are two eigenvectors corresponding to the eigenvalue. The cycle for the first eigenvector of $(J - \lambda I)$ is 3 and the second eigenvector is 2.

Theorem

Let $\lambda_1, \ldots, \lambda_d$ be the distinct eigenvalues of a given $A \in M_n$ in any prescribed order, let $q_1 \dots, q_d$ be their respective indices, and let $q = q_1 + \dots + q_d$. Then A is unitarily similar to an upper triangular matrix of the form

Corollary

Let $A \in M_n$ be a projector: $A^2 = A$. Let

$$\sigma_1 \ge \cdots \ge \sigma_g > 1 \ge \sigma_{g+1} \ge \cdots \ge \sigma_r > 0 = \sigma_{r+1} = \cdots$$

be the singular values of A, so r = rankA and g is the number of singular values of A that are greater than 1. Then A is unitarily similar to

$$\begin{bmatrix} 1 & (\sigma_1^2 - 1)^{1/2} \\ 0 & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 1 & (\sigma_g^2 - 1)^{1/2} \\ 0 & 0 \end{bmatrix} \oplus I_{r-g} \oplus 0_{n-r-g}$$

26/2

Reference

- [1] L. N. Trefethen and D. Bau III, *Numerical linear algebra*. Siam, 1997, vol. 50, 41-47.
- [2] G. Strang, *Linear algebra and learning from data*. Wellesley-Cambridge Press, 2019.
- [3] G. H. Golub and C. F. van Loan, *Matrix Computations*, Fourth. JHU Press, 2013, p. 82.
- [4] C. D. Meyer, *Matrix analysis and applied linear algebra*. Siam, 2000, vol. 71, 386-389.
- [5] G. Strang, *Linear algebra and its applications*. Thomson, Brooks/Cole, 2006, p. 186.
- [6] N. J. Higham, Functions of matrices: theory and computation. SIAM, 2008, p. 326.
- [7] R. A. Horn and C. R. Johnson, *Matrix analysis*. Cambridge university press, 2012, 191-213.

