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Projectors
Projectors

Definition
A projector is a square matrix P that satisfies

P2 = P. (1)

For v ∈ range(P), v = Px for some x

Pv = P2v = Px = v.

This means that Pv − v ∈ null(P).

Figure: An oblique projection
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Projectors
Complementary Projectors

If Pis a projector, I − P is also a projector,

(I − P)2 = I − 2P − P2 = I − P

The matrix I − P is called the complementary projector to P.

range(I − P) = null(P) (2)

Proof.
∀v ∈ null(P), (I − P)v = v − Pv = v.⇒ v ∈ range(I − P).
∀v, (I − P)v = v − Pv = 0⇒ v ∈ null(P). �

Also, it is easy to see that null(I − P) = range(P).
And range(P) ∩ null(P) = 0
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Projectors
Complementary Projectors

Figure: The Big Picture of Linear Algebra[2]

4 / 27



5

Projectors
Orthogonal Projectors

Figure: An orthogonal
projection

Let S1 = range(P),S2 = null(P), P is orthogonal projector if
S1⊥S2.

Theorem
A projector P is orthogonal if and only if P = P∗

Proof.
If P = P∗, then the inner product between a vector Px ∈ S1
and a vector (I − P)y ∈ S2 is zero:

x∗P∗(I − P)y = x∗(P − P2)y = 0

Thus the projector is orthogonal.
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Projectors
Orthogonal Projectors

Figure: An orthogonal
projection

Proof (Cont.)
We use SVD to show the “only if”. Suppose that P is
orthogonal. And S1 has dimension n. Then an SVD of P
can be expressed as follows. Let {q1, . . . ,qm} be an
orthogonal basis of Cm, where {q1, . . . ,qn} is a basis of S1
and {qn+1, . . . ,qm} is a basis of S2. For j ≤ n, Pqj = qj ,
and for j > n, Pqj = 0. Let Q be the unitary matrix such
that jth column is qj .
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Projectors
Orthogonal Projectors

Figure: An orthogonal
projection

Proof (Cont.)

PQ =
q1 · · · qn 0 · · ·


so that

Q∗PQ =



1
. . .

1
0

. . .


= Σ

a diagonal matrix with ones in the first n entries and zeros
everywhere else.
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Projectors
Orthogonal Projectors

Figure: An orthogonal
projection

Proof.
Thus we have constructed a singular value decomposition
of P:

P = QΣQ∗

Since P∗ = (QΣQ∗)∗ = Q∗Σ∗Q = QΣQ∗ = P, P = P∗ �
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Projectors
Projection with an Orthonormal Basis

Since an orthogonal projector has some singular values equal to zero, We will use
reduced SVD. We obtain the marvelously simple expression

P = Q̂Q̂∗ (3)

where the columns of Q̂ are orthonormal. Let {q1, . . . ,qn} be an any set n orthogonal
vectors in Cm, and Q̂ be the corresponding m × n matrix. Consider v can be expressed as

v = r +
n∑
i=1

(qiq
∗
i )v

So the map

v 7→
n∑
i=1

(qiq
∗
i )v (4)

is an orthogonal projector onto range(P).
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Projectors
Projection with an Orthonormal Basis

It can be written y = Q̂Q̂∗v:

The complement of an orthogonal projector is also an orthogonal projector.
(∵ I − Q̂Q̂∗ is hermitian.)
The complement projects onto the space orthogonal to range(Q̂).
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Projectors
Projection with an Orthonormal Basis

Example
An important special case of orthogonal projectors is the rank-one orthogonal projector
that isolates the component in a single direction q, which can be written

P∗ = qq∗. (5)

These are the pieces from which higher-rank projectors can be made, as in (4). Their
complements are the rank m - 1 orthogonal projectors that eliminate the component in the
direction of q:

P⊥q = I − qq∗.

For arbitrary nonzero vectors a, the analogous formulas are

Pa =
aa∗

a∗a
, P⊥a = I −

aa∗

a∗a
. (6)
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Projectors
Projection with an Arbitrary Basis

Suppose that the subspace is spanned by the linearly independent vectors {a1, . . . ,an},
and let A be the m × n matrix whose jth column is aj . In passing from v to its orthogonal
projection y ∈ range(A), the difference y − v must be orthogonal to range(A).

a∗j (y − v) = 0 for every j

y ∈ range(A) ⇒ ∃x such that y = Ax

⇒ a∗j (Ax − v) = 0 for every j

⇒ A∗(Ax − v) = 0

⇒ A∗Ax = A∗v

⇒ x = (A∗A)−1A∗v (7)

⇒ P = A(A∗A)−1A∗(∵ y = Ax) (8)
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Projectors
In Matrix Computations

There are several important orthogonal projections associated with the singular value
decomposition. Suppose A = UΣVT ∈ Rm×n is SVD of A and that r = rank(A). If we have
the U and V partitionings

U =
[
Ur Ũr

]
r m − r

,
V =

[
Vr Ṽr

]
r n − r

Then

VrVT
r = projection on to null(A)⊥ = range(AT )

ṼrṼT
r = projection on to null(A)

UrUT
r = projection on to range(A)

ŨrŨT
r = projection on to range(A)⊥ = null(AT )
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Projectors
In Matrix analysis and applied linear algebra

Figure: Projectors in Matrix analysis and applied linear algebra
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Projectors
In Matrix analysis and applied linear algebra

Angle between Complementary Subspaces.
Let angle of nonzero vectors u and v, denoted as θ, is defined to be the number
0 ≤ θ ≤ π/2 such that

cos θ =
vTu

‖v‖2‖u‖2
.

How about “angle between subspaces of Rn”?
Consider R and N such that the nonzero subspaces and Rn = R ⊕ N .
The angle between R and N is defined to be the number 0 ≤ θ ≤ π/2 such that

cos θ = max
u∈R
v∈N

vTu

‖v‖2‖u‖2
= max

u∈R,v∈N
‖u‖2=‖v ‖2=1

vTu

This is a good definition, but it’s not easy to compute.
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Projectors
In Matrix analysis and applied linear algebra

Angle between Complementary Subspaces.
Let P be the projector such that range(P) = R and null(P) = N .
Recall the matrix 2-norm of P is

‖P‖2 = max
‖x‖2=1

‖Px‖2

In other words, ‖P‖2 is the length of a longest vector
in the image of the unit sphere under transformation
by P. Consider the situation in R3. The image of the
unit sphere under P is obtained by projecting the
sphere onto R along lines parallel to N .
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Projectors
In Matrix analysis and applied linear algebra

Angle between Complementary Subspaces.

The norm of a longest vector v on this
ellipse equals the norm of P. That is,
‖v‖2 = max

‖x ‖2=1
‖Px‖2 = ‖P‖2.

Therefore,

sin θ =
‖x‖2
‖v‖2

=
1

‖v‖2
=

1

‖P‖2
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Projectors
In Linear algebra and its application

There is example of projection(projector) matrix.

Least-Squares Fitting of Data
The cost of producing t books like this one is nearly linear, b = c + dt, with editing and
typesetting in c and then printing and binding in d. c is the set-up cost and d is the cost for
each additional book.

c + dt1 = b1
c + dt2 = b2

...

c + dtm = bm

⇒


1 t1
1 t2
...

...
1 tm


[
c
d

]
=


b1
b2
...

bm


, or Ax = b

The best solution (ĉ, d̂) is the x̂ that minimizes the squared error E2:

Minimize E2 = ‖b − Ax‖ = (b1 − C − Dt1)2 + · · · + (bm − C − Dtm)2.
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Projectors
In Linear algebra and its application

Example
Let (t1, b1) = (−1,1), (t2, b2) = (1,1) and (t3, b3) = (2,3), then

Ax = b is
c − d = 1

c + d = 1

c + 2d = 3

or

1 −1
1 1
1 2


[
c
d

]
=


1
1
3


Since there is no straight line through all three points, they are solved by least squares:

AT Ax̂ = ATb ⇒

[
3 2
2 6

] [
ĉ
d̂

]
=

[
5
6

]
The best solution is ĉ = 9

7 , d̂ =
4
7 and the best line is 9

7 +
4
7 t.

The line 9
7 +

4
7 t has 5

7 ,
13
7 ,

17
7 at −1,1,2. This vector is the projection.(P = A(AT A)−1AT )
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Projectors
In Linear algebra and its application

Figure: Example of straight-line approximation matches the projection p of b
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Projectors
In Functions of Matrices

The pseudoinverse X ∈ Cm×m of A ∈ Cm×n is the unique matrix satisfying the four
Moore–Penrose conditions:

(i) AX A = A, (ii) X AX = X,
(iii) AX = (AX)∗, (iv) X A = (X A)∗. (9)

The pseudoinverse is denoted by A+.
Let S be a subspace of Cm, and let PS ∈ C

m×m.
I PS is is the projector onto S if range(PS) = S and P2

S = PS.
The projector is not unique.

I PS is is the orthogonal projector onto S if range(PS) = S and P2
S = PS and P∗S = PS.

The orthogonal projector is unique.
In terms of the pseudoinverse, Prange(A) = AA+ and Prange(A∗) = A+A.
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Projectors
In Matrix analysis

Theorem
Let A ∈ Mn be given. There exists a unique monic polynomial qA(t) of minimum degree
that annihilates A. The degree of qA(t) is at most n. If p(t) is any monic polynomial such
that p(A) = 0, then qA(t) divides p(t), that is, p(t) = h(t)qA(t) for some monic polynomial h(t).

Definition
Let A ∈ Mn be given. The unique monic polynomial qA(t) of minimum degree that
annihilates A is called the minimal polynomial of A.

Example

Let A =

0 1 0
1 0 0
0 0 1

 , then the minimal polynomial of A is qA(t) = t2 − 1.
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Projectors
In Matrix analysis

Definition
Thought of as a formal polynomial in t, the characteristic polynomial of A ∈ Mn is

pA(t) = det(t I − A)

We refer to the equation pA(t) = 0 as the characteristic equation of A.

Example

Let A =

0 1 0
1 0 0
0 0 1

 , then the characteristic polynomial of A is pA(t) = t3 − t2 − t + 1.

And since pA(A) = 0, pA(t) = (t − 1)(t2 − 1) = h(t)qA(t) where h(t) = t − 1 and qA(t) = t2 − 1.
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Projectors
In Matrix analysis

Theorem
Let A ∈ Mn be given. There is a nonsingular S ∈ Mn, positive integers q and n1, . . . ,nq with
n1 + · · · + nq = n and scalars λ1, . . . , λq ∈ C such that

A = S


Jn1
(λ1)

. . .

Jnq (λq)

 S−1 (10)

The Jordan matrix JA = Jn1
(λ1) ⊕ · · · ⊕ Jnq (λq) is uniquely determined by A up to

permutation of its direct summands. If A is real and has only real eigenvalues, then S can
be chosen to be real.

Fact : JA is similar to A.(has same eigenvalues)
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Projectors
In Matrix analysis

We may assume that J = Jm1
(λ) ⊕ · · · ⊕ Jmp (λ) ⊕ Ĵ, in which the Jordan matrix Ĵ is a direct

sum of Jordan blocks with eigenvalues different from λ. Then

J − λI =(Jm1
(λ) − λI) · · · (Jmp (λ) − λI) ⊕ (Ĵ − λI)

=Jm1
(0) ⊕ · · · ⊕ Jmp (0) ⊕ (Ĵ − λI)

is similar to A− λI. Moreover, (J − λI)k is similar to (A− λI)k . And rank is similarity invariant,

rank(A − λI)k = rank(J − λI)k = rank Jm1
(0)k + · · · + rank Jmp (0)

k + rank(Ĵ − λI)k (11)

Now let A ∈ Mn, let λ ∈ C, let k be a positive integer, let

rk(A, λ) = rank(A − λI)k, r0(A, λ) B n (12)

and define
wk(A, λ) = rk−1(A, λ) − rk(A, λ), w1(A, λ) B n − r1(A, λ) (13)
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Projectors
In Matrix analysis

Using (11) and (12), we can explain the algebraic meaning of wk(A, λ):

wk(A, λ) =(rank Jm1
(0)k−1 − rank Jm1

(0)k) + · · · + (rank Jmp (0)
k−1 − rank Jmp (0)

k)

=(1 if m1 ≥ k) + · · · + (1 if mp ≥ k) (14)
=number of blocks with eigenvalue λ that have size at least k

Definition
The Weyr characteristic of A ∈ Mn associated with λ ∈ C is

w(A, λ) = (w1(A, λ), . . . ,wq(A, λ))

in which the sequence of integers wj(A, λ) is defined by (13)
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Projectors
In Matrix analysis

Definition
Let λ ∈ C be given, let q ≥ 1 be a given positive integer, let w1 ≥ · · · ≥ wq ≥ 1 be a given
nonincreasing sequence of positive integers, and let w = (w1, . . . ,wq). The Weyr block
W(w, λ) associated with λ and w is the upper triangular q × q block bidiagonal matrix

W(w, λ) =



λIw1
Gw1 ,w2

λIw2
Gw2 ,w3

. . .
. . .

. . . Gwq−1 ,wq

Iwq


(15)

in which Gwi ,wj =

[
Iwj

0

]
∈ Mwi ,wj , 1 ≤ i < j
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Projectors
In Matrix analysis

For any A ∈ Mn, let q be the index of an eigenvalue λ of A, let wk = wk(A, λ), k = 1,2, . . . be
the Weyr characteristic of A associated with λ. Define the Weyr block of A associated with
the eigenvalue λ to be

WA(λ) = W(w(A, λ), λ)

Theorem
Let λ1, . . . , λd is be distinct eigenvalues of A ∈ Mn.
I There is a nonsingular S ∈ Mn and there are Weyr blocks W1, . . . ,Wd such that
I A = S(W1 ⊕ · · · ⊕Wd)S−1

I The Weyr matrix W1 ⊕ · · · ⊕Wd is similar to A.
where Wj = WA(λj) for each j = 1, . . . , d.

Let WA = WA(λ1) ⊕ · · · ⊕WA(λd), then A = SWAS−1 is Weyr canonical form of A.
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Projectors
In Matrix analysis

Example
Consider the Jordan matrix J = J3(λ) ⊕ J2(λ), then wJ (J, λ) = 2,2,1:

J =


λ 1 0
0 λ 1
0 0 λ

λ 1
0 λ


⇒ WJ (λ) =


λ 0
0 λ

1 0
0 1
λ 0
0 λ

1
0
λ


The eigenvalue of J is (λ,λ, λ, λ, λ), considering multiplicity and there are two eigenvectors
corresponding to the eigenvalue. The cycle for the first eigenvector of (J − λI) is 3 and the
second eigenvector is 2.
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Projectors
In Matrix analysis

Theorem
Let λ1, . . . , λd be the distinct eigenvalues of a given A ∈ Mn in any prescribed order, let
q1 . . . ,qd be their respective indices, and let q = q1 + · · · + qd. Then A is unitarily similar to
an upper triangular matrix of the form

F =



µ1In1
F12 F13 · · · F1p

µ2In2
F23 · · · F2p

µ1In1

. . .
...

. . . Fp−1 p

µp Inp



in which
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Projectors
In Matrix analysis

Corollary
Let A ∈ Mn be a projector: A2 = A. Let

σ1 ≥ · · · ≥ σg > 1 ≥ σg+1 ≥ · · · ≥ σr > 0 = σr+1 = · · ·

be the singular values of A, so r = rank A and g is the number of singular values of A that
are greater than 1. Then A is unitarily similar to[

1 (σ2
1 − 1)

1/2

0 0

]
⊕ · · · ⊕

[
1 (σ2

g − 1)
1/2

0 0

]
⊕ Ir−g ⊕ 0n−r−g
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