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Residual Minimization in Kn

Last two lecture...
A ∈ Cm×m : square matrix
b ∈ Cm : vector
Kn : Krylov subspace 〈b, Ab, . . . , An−1b〉

In this lecture...
A ∈ Cm×m : nonsingular matrix
Goal : solving Ax = b
Denote the exact solution x∗ = A−1b
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Residual Minimization in Kn

Idea of GMRES
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Residual Minimization in Kn

Let Kn be the m × n Krylov matrix that

Kn =

 b Ab · · · An−1b


In lecture 33, Kn must have a reduced QR factorization Kn = QnRn.
And we have

AKn =

 Ab A2b · · · Anb
 (1)

The column space of AKn is AKn.
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Residual Minimization in Kn

Problem
Find c ∈ Cn such that

argmin
c
‖AKnc − b‖ (2)

Once c is found, we would set xn = Knc.

And each Kn must have a reduced QR factorization

Kn = QnRn

We can get Qn after using Arnoldi iteration.

Problem
Find y ∈ Cn such that

argmin
y
‖AQny − b‖ (3)

We can write xn = Qny instead of xn = Knc
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Residual Minimization in Kn

Because of the special structure of Krylov subspaces, the dimension must be (n + 1) × n.

AQn = Qn+1H̃n

Problem
Find y ∈ Cn such that

argmin
y
‖Qn+1H̃ny − b‖ (4)

Now both vectors inside the norm are in the column space of Qn+1. Therefore, multiplying
on the left by Q∗n+1 does not change that norm.

Problem
Find y ∈ Cn such that

argmin
y
‖H̃ny −Q∗n+1b‖ (5)

6 / 29



7

Residual Minimization in Kn

Finally, we note that by construction of the Krylov matrices {Qn}, Q∗n+1b is equal to ‖b‖e1.
Thus we reach at last the final form of the GMRES least squares problem:

Problem
Find y ∈ Cn such that

argmin
y
‖AH̃ny − ‖b‖e1‖ (6)
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Mechanics of GMRES
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Mechanics of GMRES
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GMRES and Polynomial Approximation

Recall
Arnoldi/Lanczos Approximation Problem.
Find pn ∈ Pn such that

argmin
pn
‖pn(A)b‖

where
Pn = {monic polynomials of degree n}

Pn = {polynomials p of degree ≤ n with p(0) = 1} (7)

By using this, the iterate xn can be written

xn = qn(A)b (8)

where q is a polynomial of degree n − 1. The corresponding residual rn = b − Axn is
rn = (I − Aqn(A))b, where pn is the polynomial defined by pn(z) = 1 − zq(z). Then we have

rn = pn(A)b
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GMRES and Polynomial Approximation

Therefore, the GMRES process chooses the coefficients of pn to minimize the norm of this
residual.

GMRES Approximation Problem
Find pn ∈ Pn such that

argmin
pn

‖pn(A)b‖ (9)

Theorem 3.1
Let the GMRES iteration be applied to a matrix A ∈ Cm×m as described above.
Scale-invariance. If A is changed to σA for some σ ∈ C, and b is changed to σb, the
residuals {rn} changed {σrn}.
Invariance under unitary similarity transformations. If A is changed to U AU∗ for some
unitary matrix U, and b is changed to Ub, the residuals {rn} changed {U∗rn}.
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Convergence of GMRES

We use Monotone convergence theorem to determine convergence of most iterative
methods.

Lemma 4.1
If a sequence of real numbers is increasing and bounded above, then its supremum is the
limit.

Lemma 4.2
If a sequence of real numbers is decreasing and bounded below, then its infimum is the
limit.

Theorem 4.3
If {an} is a monotone sequence of real numbers, then this sequence has a finite limit if and
only if the sequence is bounded.
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Convergence of GMRES

But in GMRES cases, we use two observations instead of Monotone convergence
theorem.
The first is that GMRES converges monotonically

‖rn+1‖ ≤ ‖rn‖ (10)

The second is that after at most m steps the process must converge, at least in the
absence of rounding errors:

‖rm‖ = 0 (11)

The critical factor of the most of problems that determines the size of this quantity is
usually ‖pn(A)‖.

‖rn‖
‖b‖

≤ inf
pn ∈Pn

‖pn(A)‖ (12)

This inequality brings us to the mathematically elegant question: given a matrix A and a
number n, how small can ‖pn(A)‖ be? This question is the basis of almost all analysis of
convergence of Krylov subspace iterations for solving systems of equations.
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Polynomials Small on the Spectrum

Given A and n, how small can ‖pn(A)‖? The standard way of obtaining estimates is to look
for polynomials p(z) that are as small as possible on the spectrum Λ(A), while still
satisfying p(0) = 1. If p is is a polynomial and S is a set in the complex plane, let us define
the scalar ‖p‖S by

‖p‖S = sup
z∈S
|p(z)| (13)

Suppose A is diagonalizable, satisfying A = VΛV−1. Since the condition number
κ(A) = ‖A‖‖A−1‖, we have

‖p(A)‖ ≤ ‖V ‖‖p(Λ)‖‖V−1‖ = κ(V)‖p‖Λ(A) (14)
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Polynomials Small on the Spectrum

Combining (14) with (12) gives the following basic theorem on convergence of GMRES.

Theorem 5.1
At step n of the GMRES iteration, the residual rn satisfies

‖rn‖
‖b‖

≤ inf
pn ∈Pn

‖pn(A)‖ ≤ κ(V) inf
pn ∈Pn

‖p‖Λ(A) (15)

where Λ(A) is the set of eigenvalues of A, V is a nonsingular matrix of eigenvectors, and
‖pn‖Λ(A) is defined by (13).

This theorem can be summarized in words as follows. If A is not too far from normal in the
sense that κ(V) is not too large, and if properly normalized degree n polynomials can be
found whose size on the spectrum Λ(A) decreases quickly with n, then GMRES converges
quickly.
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Polynomials Small on the Spectrum

Example 5.2
Let A be a 200 × 200 matrix whose entries are independent samples from the real normal
distribution of mean 2 and standard deviation 0.5/

√
200. In MATLAB,

m = 200; A = 2 ∗ eye(m) + 0.5 ∗ randn(m)/sqrt(m); (16)

Our problem is
Ax = b where b = (1,1, . . . ,1)∗

The convergence in this case is extraordinarily steady at a rate approximately 4−n. Since
the spectrum of A approximately fills the disk indicated, ‖p(A)‖ is approximately minimized
by the choice p(z) = (1− z/2)n. Since I − A/2 is a random matrix scaled so that its spectrum
approximately fills the disk of radius 1/4 about 0, we have ‖p(A)‖ = ‖(I − A/2)n‖ ≈ 4−n.
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum

Example 5.3
If the eigenvalues of a matrix "surround the origin," on the other hand, such rapid
convergence cannot be expected. The matrix is now A′ = A + D, where A is the matrix of
(16) and D is the diagonal matrix with complex entries

dk = (−2 + 2 sin θk) + i cos θk, θk =
kπ

m − 1
,0 ≤ k ≤ m − 1

After this, the eigenvalues now lie in a semicircular cloud that bends around the origin.
The convergence rate is much worse than before, making the iterative computation no
better than Gaussian elimination for this problem. The condition numbers are now
κ(A) ≈ 3.7790 and κ(V) ≈ 78.3663, so the deterioration in convergence cannot be explained
by conditioning alone; it is the locations of the eigenvalues, not their magnitudes (or those
of the singular values) that are causing the trouble. If the arc extended much further
around the spectrum, the convergence would worsen further.
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum

25 / 29



26

Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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Polynomials Small on the Spectrum
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