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Introduction

In this lecture, ours will be to consider the Arnoldi process, a Gram-Schmidt-style iteration
for transforming a matrix to Hessenberg form.
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The Arnoldi/Gram-Schmidt Analogy

We can summarize the four algorithms just mentioned in a table:

A = QR A = QHQ∗

orthogonal structuring Householder Householder
structured orthogonalization Gram-Schmidt Arnoldi

Krylov subspace
In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A and a
vector b of dimension n is the linear subspace spanned by the images of b under the first r
powers of A (starting from A0 = I), that is,

Kr (A,b) = span{b, Ab, A2b, . . . , Ar−1b}
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The Arnoldi/Gram-Schmidt Analogy

Arnoldi iteration
The Arnoldi iteration was invented by W. E. Arnoldi in 1951.[1] In numerical linear algebra,
the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative
method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general
(possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov
subspace, which makes it particularly useful when dealing with large sparse matrices.

The Arnoldi process needs this vector in order to get started. For applications to
eigenvalue problems, we typically assume that b is random. For applications to systems of
equations, as considered in later lectures, it will be the right-hand side, or more generally,
the initial residual.
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Mechanics of the Arnoldi Iteration

A = QHQ∗ or AQ = QH

Let Qn be the matrix m × n matrix whose columns are the first n columns of Q:

Qn =

 q1 q2 · · · qn

 (1)

And let Ĥn be the (n + 1) × n upper-left section of H, which is also a Hessenberg matris:

Ĥn =



h11 · · · h1n
h21 h22 h2n

. . .
. . .

...
. . .

. . .
...

hn,n−1 hnn
hn+1,n


(2)
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Mechanics of the Arnoldi Iteration

Then we have
AQn = Qn+1Ĥn (3)

that is,

 A

 q1 · · · qn

 =
 q1 · · · qn+1




h11 · · · h1n
h21

. . .
...

hn+1,n


The nth column of this equation canbe written as follows:

Aqn = h1nqn + · · · + hnnqn + hn+1,nqn+1 (4)
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Mechanics of the Arnoldi Iteration

The Arnoldi iteration is simply the modified Gram-Schmidt iteration that implement (4). The
following algorithm should be compared with Algorithm 8.1
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QR Factorization of a Krylov Matrix

Krylov matrix
Krylov subspace is defined as follows:

Kn = 〈b, Ab, . . . , An−1b〉 = 〈q1,q2, . . . ,qn〉 ⊆ Cm (5)

And let define Kn to be the m × n Krylov matrix

Kn =

 b Ab · · · An−1b
 (6)

Then Kn must have a reduced QR factorization

Kn = QnRn where Qn is the same matrix as above. (7)
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QR Factorization of a Krylov Matrix

quasi-direct iterative
straightforward but unstable simultaneous iteration (6)-(7)

subtle but stable QR algorithm Arnoldi
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Projection onto Krylov Subspaces

Another way to view the Arnoldi process is as a computation of projection onto successive
Krylov Subspaces.

Q∗nQn+1 : n × (n + 1) identity
⇒Q∗nQn+1H̄n : n × n Hessenberg matrix

Hn =



h11 · · · h1n
h21 h22

. . .
. . .

...
. . .

. . .

hn,n−1 hnn


(8)

And from (3),
Hn = Q∗nAQn (9)
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Projection onto Krylov Subspaces

Rayleigh-Ritz method
The Rayleigh-Ritz method allows for the computation of Ritz pairs (λ̃i, x̄i) which
approximate the solution to the eigenvalue problem

Ax = λx where A ∈ Cn×n

The procedure is as follows:
1. Compute an orthonormal basis V ∈ Cn×m approximating the eigenspace

corresponding to m eigenvectors.
2. Compute R = V∗AV

3. Compute the eigenvalues of R for solving Rvi = λ̃ivi
4. Form the Ritz pairs (λ̃i, x̄i) = (λ̃i,Vvi)

If a Krylov subspace is used and A is general matrix, then this is the Arnoldi algorithm.
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Projection onto Krylov Subspaces

Theorem 5.1
The matrices Qn generated by the Arnoldi iteration are reduced QR factors of the Krylov
matrix (6):

Kn = QnRn (10)

The Hessenberg matrices Hn are the corresponding projections

Hn = Q∗nAQn (11)

and the successive iterates are related by formula

AQn = Qn+1H̃n (12)
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