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Jacobi

Jacobi algorithm

One of the oldest ideas for computing eigenvalues of matrices introduced by Jacobi in
1845.

This method has attracted attention throughout the computer era, especially since the
advent of parallel computing, though it has never quite managed to displace the
competition.

standard approach

A 2 x 2 real symmetric matrix can be diagonalized in the form

T |a d _ 750 0 q
J [d b] J= [ 0 % 0], where J is orthogonal. (1)




Jacobi

There are several ways to choose J.
One could take it to be a 2 x 2 Householder reflection of the form

F = [_SC i] where s = sin 6 and x = cos 6 for some 6. 2)
One can use not a reflection but a rotation,

J = with det J = 1. 3)

This is the standard approach for the Jacobi algorithm. It can be shown that the
diagonalization (1) is accomplished if 6 satisfies

tan(20) = ;Tda (4)

and the matrix J based on this choice is called a Jacobi rotation.
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Definition 1.1 (Givens rotation)
A Givens rotation is represented by a matrix of the form

1 v Q0 -+ 0 --- 0]
0 c —s 0
G(i,j,0) = |: where ¢ = cos9 and s = sin 0
0 s c 0
o0 .- 0 . ¢ .o 1]

The product G(, j, 6)x represents a counterclockwise rotation of the vector in the (i, j)
plane of 6 radians, hence the name Givens rotation.

v
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Property of Givens rotation

A N A A | KN
where r = Va2 + b2, c = —4— b

Vaz+b2’ © T VaZ+b2’
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Example 1.2

et ]

=r=+vA(1,1)2 + A(1,2)? ~ 7.8102,

=@ = § ~ 0.7682,s = _—5 ~ (0.6402
r r

Lo | 07682 0.6402
~ |-0.6402 0.7682
_[78102 44813]
—0Ax [ 0 —2.4327] =RO=6C
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Example 1.3

6 5
a=[s
ArCham 2 A 2) B
—0 = Eo2E ~ -0.5536,

=c¢ =cosf ~ 0.8507,s = sinf ~ —0.5257

G~ 0.8507 —0.5257
~ 105257 0.8507

o [9.0902 0
=G AGN[ 0 -2.0902
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The Jacobi method is attractive because it deals only with pairs of rows and columns at a
time, making it easily parallelizable (Exercise 30.4). The matrix is not tridiagonalized in
advance; the Jacobi rotations would destroy that structure. Convergence for matrices of
dimension m < 1000 is typically achieved in fewer than ten sweeps, and the final
componentwise accuracy is generally even better than can be achieved by the QR
algorithm. Unfortunately, even on parallel machines, the Jacobi algorithm is not usually as
fast as tridiagonalization followed by the QR or divide-and-conquer algorithm (discussed
below), though it usually comes within a factor of 10 (Exercise 30.2).

example_of_Jacobi.m



Bisection

Our next algorithm is bisection is important.
We can find

> the largest 10% of the eigenvalues

> the smallest thirty eigenvalues

» all the eigenvalues in the interval [1,2].
The starting point is elementary. Since the eigenvalues of a real symmetric matrix are real,
we can find them by searching the real line for roots of the polynomial p(x) = det(A — xI).
This sounds like a bad idea. But, our the idea is to find the roots by evaluating p(x) at
various points x, without everlooking at its coefficients, and applying the usual bisection
process for nonlinear functions. This could be done, for example, by Gaussian elimination
with pivoting (Exercise 21.1), and the resulting algorithm would be highly stable.

Exercises

21.1. Let A be the 4 x 4 matrix (20.3) considered in this lecture and the
previous one.

(a) Determine det A from (20.5).

(b) Determine det A from (21.3).

(c) Describe how Gaussian elimination with partial pivoting can be used to
find the determinant of a general square matrix.
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-
This much sounds useful enough, but not very exciting. What gives the bisection method

its power and its appeal are some additional properties of eigenvalues and determinants

that are not immediately obvious.

For given a symmetric matrix A € R™™ let A1), ..., At denote its principal square
submatrices of dimension 1,...,m. It can be shown that the eigenvalues of the matrices
interace. Assume that A is tridiagonal and irreducible in the sense that all of ites

off-diagonal entries are non zero:

aq b1
bl as b2
A= b2 as . bj #0 (5)
T bmfl
bm—l am



Bisection

By Exercise 25.1, the eigenvalues of A% are distinct.

Exercise

25.1. (a) Let A € C™*™ be tridiagonal and hermitian, with all its sub- and
superdiagonal entries nonzero. Prove that the eigenvalues of A are distinct.
(Hint: Show that for any A € C, A — AI has rank at least m — 1.)

Sol) Consider A — A1, which is also tridiagonal and all its sub- and superdiagonal entries

T
are nonzero. We can write A — Al as a block matrix [V 2] where Bisan (m—1)x (m—1)

B
matrix and « and v are vectors of length m — 1. Notice that B is uppertriangular and with
nonzero diagonal entries. Thus B is non-degenerate. If |A — AI| = 0, then
rank(A — AI) = m— 1. This means dim(null(A — A1)) = 1, i.e. the geometric multiplicity of A is
1. As A is hermitian, then geometric multiplicity coincides with the algebraic multiplicity.
Thus A has al distinct eigenvalues.
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So, let eigenvalues of A®) be denoted by 1% < A < ... < /l,((k). The crucial property that
makes bisection powerful is that there eigenvalues strictly interlace, i.e,

(k+1) _ (k) _ 5(k+1)
AT <A <Ay (6)
fork=1,2....m—-1landj=1,2,...,k—1.
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Figure 30.1. Ilusiration of the sirict eigenvalue interlace property (30.6) for
the principal submatrices {AU)} of an irreducible tridiagonal real symmetric
matriz A. The eigenvalues of A®) interlace those of A%V, The bisection

algorithm takes advantege of this property.
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It is the interlacing property that makes it possible to coun the exact number of
eigenvalues of a matrix in a specfied interval.

Example 2.1
Consider the 4 x 4 tridiagonal matrix

— =
—_ O

From the numbers

det(AD) =1, det(A®) =-1, det(A®)=-3, det(A¥)=4
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Example 2.1

we know that
» AW has no negative eigenvalues,
» A has one negative eigenvalue,
» A®) has one negative eigenvalue,
» A® has two negative eigenvalues.

In general, for any symmetric tridiagonal A € R™ ™, the number of negative eigenvalues is
equal to the number of sign changes in the sequence

1, det(AM), det(A®),. .., det(A"™), (7)

which is known as a Sturm sequence.
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Example 2.1

By shifting A by a multiple of the identity, we can determine the number of eigenvalues in
any interval [a, D). i.e. it is (# of eigenvalues in (-0, b)) — (# of eigenvalues in (—oo,a)).
One more observation completes the description of the bisection algorithm: for a
tridiagonal matrix, the determinants of the matrices A%) are related by a three-term
recurrence relation. Expanding det(A®)) by minors with respect to its entries b;_, and ay
in row k gives, from (5),

det(A®) = ai det(A*~V) — b2 | det(A*2). (8)
Introducing the shift by xI and writing p®(x) = det(A%® — xTI), we get
pP) = (ar — x)p* D (x) - b7 _ p* 2 (). (9)

If we define p-Y(x) = 0 and p©(x) = 1, then this recurrence is valid for all k = 1,2,...,m.

y
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Example 2.1

By applying (9) for a succession of values of x and counting sign changes along the way,
the bisection algorithm locates eigenvalues in arbitrarily small intervals. The cost is O(m)
flops for each evaluation of the sequence, hence O(m log(€emachine)) flops in total to find an
eigenvalne to relative accuracy enachine- If @ small number of eigenvalues are needed, this
is a distinct improvement over the O(m?) operation count for the QR algorithm. On a
multiprocessor computer, multiple eigenvalues can be found independently on separate
processors.
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The divide-and-conquer algorithm, based on a recursive subdivision of a symmetric

tridiagonal eigenvalue problem into problems of smaller dimension, represents the most
important advance in matrix eigenvalue algorithms since the 1960s. First introduced by

Cuppen in 1981, this method is more than twice as fast as the QR algorithm if
eigenvectors as well as eigenvalues are required.

Concept of Divide-and-Conquer
1. Divide : Divide the original problem into smaller sub-problems of similar type.

2. Conquer: Solve each sub-problem recursively. If the sub-problem is small enough, put
it as an escape condition and solve it.

3. Combine: Solve the original problem by combining the answers of the sub-problems.




Divide-and-Conquer

divide divide

g solve solve solve solve solve solve
conq subproblem |}, subproblem . subproblem . subproblem ¥ subproblem ibprobl; bprobl

() (e ) (e () ) () ()

combine

solution to
problem



Divide-and-Conquer

Example 3.1
[l
FEeE [ The sorting algorithm is a representative
example of using the divide-and-conquer
algorithm.

1. Divide the original problem until it is easy
enough to compare (until there are 2
remaining).

2. Sort by comparison over small lists.
3. Combine each sorted list.

Spelalf]




Divide-and-Conquer

:
We shall give just the essential idea, omitting all details.

Let T € R™™ with m > 2 be symmetric, tridiagonal, and irreducible in the sence of having

only nonzeros on the off-diagonal. Then for any » in the range 1 < n < m, T can be split

into submatrices as follows:

T Ty

T T,

Here T; is the upper-left n x n principal submatrix of 7, 75 is lower-right (m — n) x (m — n)
principal submatrix, and B = t,41., = tn.n+1 # 0. The modification from 73,7, to 73,75 is
introduced to make the rightmost matrix of (10) have rank 1.
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Here is how (10) might be expressed in words.

A tridiagonal matrix can be written as the sum of a 2 x 2 block-diagonal matrix with
tridiagonal blocks and a rank-one correction.

The divide-and-conquer algorithm proceeds as follows.

1. Split the matrix T as in (10) with n ~ m/2.

2. Since the correction matrix is of rank one, a nonlinear but rapid calculation can be
used to get from the eigenvalues of T} and Ty to those of T itself.

3. Now recurse on this idea, finding the eigenvalues of 7; and 75 by further subdivisions
with rank-one corrections, and so on.
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In this process there is one key mathematical point.
How to find eigenvalues of T from eigenvalues of T, and 75?

Suppose that diagonalizations have been computed:

Ty = 01D:1QY, T = Q2D:0%.

“ ol

where ¢! is the last row of Q; and ¢! is the first row of Q5.

Since this equation is a similarity transformation, we have reduced the mathematical
problem to the problem of finding the eigenvalues of a diagonal matrix plus a rank-one
correction.

Then from (10),

_ o7 W T _ [T T
T= with 2" = [q].4%] . (11)

+ ﬁzzT) Qg



Divide-and-Conquer

naq
[2te] -

Suppose we wish to find the eigenvalues of D + ww’, where D € R™ ™ is a diagonal matrix
with distinct diagonal entries {d;} and w e R is a vector

We can assumne w; # 0 for all j, for otherwise, the problem is reducible. Then the
eigenvalues of D + ww! are the roots of the rational funciton f() as illustrated in Figure.

fW=1+3 L (12) // j
;‘d A &l &l &/ & 4




Divide-and-Conquer

The equation f(1) = 0 is knowm as the secular equation.

(D+wwh)g=1g= (D—-ADg+wwlq)=0
=g+ D-A)wwlg)=0
=wlg+w (D-aDwwlq)=0
= (f()(w'q) = 0iff w'q # 0)
-, q is eigenvector of D + ww! with eigenvalue A, then f(1) must be 0.
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