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Motivation

Figure 1: Zeno’s paradoxes




Zeno’s paradoxes

In mathematics, Zeno’s paradoxes is false.
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Figure 2: Obviously, Achilles can overtakes the tortoise!




Zeno’s paradoxes

But in computer science, Zeno’s paradox is TRUE!



Lagging error phenomenon

Consider the time-varying reciprocal problem in the following form:
f(x(1),0) =a()x(1) -1 =0 €R,z € [0, —c0) (1)

where a(z) # 0 € R denotes a smoothly time-varying scalar with «(¢) € R denoting the time
derivative of a ().

aim : Finding the x(¢) € R to make (1) hold true at any time 7 € [0, —c0).
And denote x*(r) as the theoretical time-varying reciprocal of a(¢), i.e., mathematically,

x*(t) =1/a(z) in (1).



Lagging error phenomenon Dt )

’

Remark

This x*(¢) is given symbolically for better understanding and solution comparison, whose
the computation of 1/a(z) at every single time instant ¢ is less practical in real-life
applications. When we compute 1/a(¢) at a time instant ¢, as the computation consumes
time At inevitably, the value of a(z) is changing during the computation procedure. This is
the so-called lagging error phenomenon. )
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Figure 3: Achilles never can overtakes the tortoise... in computer!




Application

» Control theory : Real-time tracking
» GPS

> Robot arm




Concept of Zhang Dynamics & Zhang Function

Zhang dynamics (ZD) has been formally proposed by Zhang et al. for various time-varying
problems solving.
Concept of Zhang dynamics

Zhang dynamics(ZD) is a special type of neural dynamics that has been formally proposed
by Zhang et al. for various time-varying problems solving.

According to Zhang et al’s neural-dynamics desigh method, the ZD is designed based on
an indefinite Zhang function (ZF) as the error-monitoring function.



Concept of Zhang Dynamics & Zhang Function

)

To lay a basis for further discussion, the design procedure for a ZD model is presented as
follows.
1. Define an indefinite ZF as the error-monitoring function to monitor the process of
time-varying reciprocal finding.
2. To force e(t) globally and exponentially converge to zero, we choose its time
derivative ¢(r) via the following ZD design formula,

de(t)

é() = 5= = —ye(w), @

where design parameter y > 0 € R.

3. By expanding the ZD design formula (2), the dynamic equation of a ZD model is thus
established for time-varying reciprocal finding.



Concept of Zhang Dynamics & Zhang Function

Theorem 1.1

As for the ZD design formula (2) which is also a dynamic system, starting from an initial
error ¢(0) € R, the error function e(r) € R globally and exponentially converges to zero with
rate .

For (2), by calculus, we obtain its analytical solution as e(z) = e(0)exp(—yt). Based on the
definition of global and exponential convergence, we can draw the conclusion that, starting
from any ¢(0), e(¢) globally and exponentially converges to zero with rate y, as time ¢
tends to infinity. i




Concept of Zhang Dynamics & Zhang Function

fx(®),t) =a(t)x(t) —1=0€R,t € [0,—0c0)

For real-time solution of time-varying reciprocal problem (1), we define the following four
different ZFs:
1L
a(t)’
e(t) = a() - —

- x(1)’
e(r) = a(t)x(t) -1, (5)

1
0= oxm "

e(t) =x(t) —




Concept of Zhang Dynamics & Zhang Function

de(t)

3 = e

é(t) =

Example of ZD model

Let us consider the ZD design formula (2) and ZF (3). Then, we have
x(t) + —5—~a(r) = 7(()——)

2(t) (1)

which is rewritten as

a’(1)x(t) = —a(t) -y (a*()x(t) — a(1)) .

Thus, we obtain ZD model (7) for time-varying reciprocal finding.




Concept of Zhang Dynamics & Zhang Function

For ZD model (7),

x(1) = (1-a®(1) x(t) —a@t) -y (@*()x(1) - a(1)) .

Figure 4: Block diagrams of ZD models (7) for time-varying reciprocal finding




Concept of Zhang Dynamics & Zhang Function

Similarly, we obtain ZD models using ZFs equations (4)—(6), respectively.

ZF | ZD model

3) a?(0)xi(1) = —a(r) =y (a*()x(1) — a(1))
(4) 2(1) = —a(0)x*(1t) —y (a(0)x*(1) - x(1))
(5)
(6)

S a()x(t) = —a()x(t) —y(a(t)x(z) = 1)
6) | a()x(t) = —a(t)x(t) +y (a(t)x(t) — a®(1)x?(1))

Table 1: Different ZFs resulting in different ZD models for time-varying reciprocal finding



Concept of Zhang Dynamics & Zhang Function

Following proposition shows the convergence properties of the proposed ZD model (7) for
time-varying reciprocal finding.

Proposition

Consider a smoothly time-varying scalar a(z) # 0 € R involved in time-varying reciprocal
problem (1). Starting from randomly-generated initial state x(0) # 0 € R which has the
same sign as a(0), the neural state x(¢) of ZD model (7) derived from ZF (3) exponentially
converges to the theoretical time-varying reciprocal x*(¢) of a(z) [i.e., a=(¢)].




Time-Varying Matrix Inversion

We will prove
A()X(t)-1=0eR™" (8)

where A(t) € R is the smoothly time-varying nonsingular coefficient matrix. Note that
A(r) together with its time derivative A(r) € R is assumed to be known or measurable.
Generally, if the time-varying matrix A(r) € R™" is of full-rank, i.e., rank(A) = min{m, n} at
any time instant ¢ € [0, +o0), then the unique time-varying pseudoinverse/inverse A*(¢) for
matrix A(z)

(AT()A®) AT (1), Em>n

At(t) =4 ATNp), ifm=n 9)
AT () (AMAT(0))™", ifm<n



Time-Varying Matrix Inversion

ZD design formula (2) is further generalized as follows

EQ e, (10)

B0 ==4"=

where design parameter y € R is defined the same as before.



Time-Varying Matrix Inversion

Specifically, for solving time-varying matrix-inversion problem (8), we define different ZFs

as below:
E(1)=X(t) - A (1) (11)
E(t)=A(t) - X' (1) (12)
E(t)=A)X(t) -1, (13)
E(t)=X(1)A() -1, (14)
E(1)=(AOX ()" -1, (15)
E(1) = (X(DA() ™" 1. (16)

Before constructing different ZD models from different ZFs, we present the following
theorem for further discussion.



Time-Varying Matrix Inversion

Theorem

The time derivative of the time-varying matrix inverse A~1(z) is formulated as
A7) =AY () A(HA (1),

Proof
Since A(1)A™1(¢) = I e R, we have
d(ANA' (1) dI

= e Rnxn
dr dr =0¢
Expanding the above equation, we obtain
1
d[(li(t) —1 (t) A(t) dA (t) 0 c Rnxn’
which is further rewritten as

dA~ 1(t) dA(t)
dt dt

A(1) AN D) = -A(DAT ().




Time-Varying Matrix Inversion

Proof.
Then, we have

_1(,)

A7) = =-AT' (AMNAT ()
ie.,
A1) = -ATY()A()A(1)
DJ
Therefore, we have following fact:
dx(;(t) =-X1OX)X (1) (17)
PO s 0dmaa) (18)
-1
QAR ~ —(anxay TEDXD (410 (19)

dt
Ee———— T



Time-Varying Matrix Inversion

E) =X -0, E0 =T = )

Considering ZD design formula (10), ZF (11), and equation (18), we have

AMX (A1) = —y(ADX (1) - DA(1) = A1), (20)
which is also rewritten in the following explicit form:
X(1) = X (1) + (AN X (1) = y(A()X (1) = 1)) A1) = A(r)

Therefore, based on ZF (11), we obtain ZD model (20) for time-varying matrix inversion.



Time-Varying Matrix Inversion

Similarly, we obtain ZD models using ZFs equations (11)—(16), respectively.

ZF | ZD model

(11) X(1) = X(1) + (A(X (1) =y (A1) X (1) = 1)) A(1) = A(1)
(12) X(1) ==X OX(OX (1) = yX () (AN X (1) = 1)

(13) X(1) = (I - A0)X (1) = A()X(1) = y(A()X (1) = 1)
(14) X(1) = X()(I = A1) = X(NA(1) = y(X(DA(1) = 1)
(15) | X(1) = (I - A1) X (1) = A(1)X (1) = y(A(1)X (1) = DA(1) X (1)
(16) | X(1) = X(1)(I = A(1)) = X()A() = yX () A(1) (X (D) A(1) = 1)

Table 2: Different ZFs resulting in different ZD models (depicted in explicit dynamics for modeling
purposes) for time-varying matrix inversion



Time-Varying Matrix Inversion

Theorem

Let us consider a smoothly time-varying nonsingular matrix A(r) € R™" in (8). Starting
from an initial state X(0) € R™", the state matrix X(z) of ZD model (20) derived from ZF
(11) globally and exponentially converges to the theoretical time-varying inverse A~1(z) of
matrix A(z).




Time-Varying Matrix Inversion

1

Figure 5: Block diagrams of ZD model (11) for time-varying matrix inversion




Numerical Experiments @
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Time-Varying Matrix Inversion

Let us consider the time-varying matrix-inversion problem with the following time-varying
matrix A(z).

A(t) =

sin(bt)  cos(5r) %
— cos(5t) sin(5t)] eR¥ (1)

By algebraic operations, the theoretical time-varying inverse of A(¢) is given as

=0 = [0 e =

Thus, we can use such a theoretical solution to compare with the solutions of
corresponding ZD models and then check the correctness of the models’ solutions.




Time-Varying Matrix Inversion

E(t)y=A)X@) -1
X(1) = (I - A@D)X(1) - AOX (1) - y(A(D)X (1) = I)

I —‘»@; Alt)x =
Y
- X(1) X(1)
hX alli >
+
(I—A()* |«
A(t)* |a—

Figure 6: Block diagrams of ZD model using ZF (15) for time-varying matrix inversion




Numerical Experiments D

28
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Figure 7: Overall Simulink modeling of ZD model using ZF (13) for time-varying matrix inversion




Numerical Experiments
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Figure 8: Result of ZNN to get inverse of time-varying matrix



Numerical Experiments

Time-varying quadratic matrix equation
Consider a time-varying quadratic matrix equation

F(t) =A@ (X(1)* +BO)X(1) +C(t) =0 (23)

where A(t), B(t), C(t) € R are given and X(¢) € R™ is unknown matrix.

We will compare three methods for solving (9). These are Fixed point iteration(FPlI),
Newton’s method(NM), and ZNN.




Numerical Experiments D
G

In this experiments, we set A(t), B(z), C(t) as following:

[1 0
aw=; 1.
_ [cos(r) —sin(r)
B(1) = sin(r)  cos(r) ] ’
C(r) = [cos(r)? — 2 cos(1) sin(r) —sin(r)?  sin(r)? — cos(r)? — 2 cos(¢) sin(r)
() = | 2 cos(1) sin(?) + cos(t)? —sin(r)?  cos(t)? — 2 cos(t) sin(¢) — sin(7)?| "

sin(t) cos(t)}

Then the solution matrix is S(z) = [_ cos(r) sin()



Numerical Experiments

We use the following error function for each method:
for fixed time 1,
Error(1) = |IS(tcar) — X(1)|lF

where r.,; = t + calculation time of each method.

X()
—’i .:{ S(tcal)

; B

Figure 9: Time passes even while the algorithm is running.




Numerical Experiments

For fixed time ¢, find X (¢) for fixed A(z), B(¢), C(t) using Newton’s method.

Algorithm 1: Newton’s method(NM)

Input: A(¢), B(z), C(¢), tolerence: tol
Output: solution: X, calculation time: 7.4
X « zeros(2,2) // Starting NM with zero initial matrix.

tic // Calculate start. Time is still running.
while res > tol do
vecH=—-(I® (AX+B)+ X" ® A) ' vec(AX?2 + BX + ()
Xpew — X +H
res < ”Xnew - X”F
X — Xpew
end
teql < t+1toc // Calculation end.




Numerical Experiments
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Figure 10: Result of Newton’s method




Numerical Experiments

For fixed time ¢, find X (¢) for fixed A(z), B(¢), C(t) using Fixed point iteration.

Algorithm 2: Fixed point iteration(FPI)

Input: A(¢), B(z), C(¢), tolerence: tol
Output: solution: X, calculation time: 7.4,
X « zeros(2,2) // Starting FPI with zero initial matrix.

tic // Calculate start. Time is still running.
while res > tol do
Xpew — (-B—AX)"'C
res < ”Xnew _X”F
X — Xnew
end
teql < t+toc // Calculation end.




Numerical Experiments
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Figure 11: Result of Fixed point iteration
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Numerical Experiments

Let ZF as below:
E(1) = A()(X(1)* + B()X (1) + C(1) (24)

And considering ZD design formula (2)

E(r) = ‘”flgt)

=AW (X())2+AX()X() + AX()X (1) + BO)X(2) + B()X(2) + C ()
= —y(A()(X(1))* + B(NX (1) + C(1))

Then, we can obtain ZD model using ZF equation,

X (1) =(1 - A(DX (1) - B()X(1) = A X ()X (1) = A(1)(X(1))*
= B0)X(1) = y(A()(X(1)* + B(1)X (1) + C(1))



Numerical Experiments
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Figure 12: ZNN Simulink Model for Solving QME



Numerical Experiments
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Figure 13: Result of Zhang Neural Network




Numerical Experiments
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Summary @
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» Understanding the time-varying problem

» Introduction to Zhang dynamic and Zhang function to create Zhang
Neural Network

> Solve the time-varying matrix equation using ZNN

» Check the advantages of ZNN by comparing with other methods
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