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Introduction

Toeplitz matrix
A Toeplitz matrix has constant diagonals.
The first row and column tell you the rest of
the matrix, because they contain the first
entry of every diagonal.

A =


a0 a−1 a−2 a−3
a1 a0 a−1 a−2
a2 a1 a0 a−1
a3 a2 a1 a0



Circulant matrix
Circulant matrix is Toeplitz matrix that
satisfy the extra “wraparound” condition that
makes them periodic.

C =


c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0


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Introduction

Toeplitz matrices are the matrices we use in signal processing and in convolutional neural
nets (CNNs). The analysis of A is based on the two-sided polynomial A(θ) with coefficients
a1−n, . . . ,a0, . . . ,an−1 :

For analysis of A

Frequency response = symbol of A A(θ) =
∑

akeikθ

A(θ) is real when A is symmetric akeikθ + ake−ikθ = 2ak cos kθ

C(θ) is nonzero when C is invertible The symbol for C−1 is 1/C(θ)

Toeplitz matrices are noncyclic convolutions with a = (a1−n, . . . ,an−1) followed by projection:

x-space Ax = convolve a ∗ x ,then keep components 0 to n − 1
θ-space Ax(θ) = multiply A(θ)x(θ) ,then project back to n coefficients
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Introduction

In many problems the Toeplitz matrix is banded. The matrix only has w diagonals above
and below the main diagonal.

Tridiagonal Toeplitz Bandwidth w = 1 A =


a0 a−1 0 0
a1 a0 a−1 0
0 a1 a0 a−1
0 0 a1 a0


We understand tridiagonal Toeplitz matrices by studying A(θ) = a−1e−iθ + a0 + a1eiθ .
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Toeplitz Matrices : Basic Ideas

Fundamental idea
In signal processing, a Toeplitz matrix is a filter.

Ax ⇒ A(θ)x(θ) (but not true)

Linear finite difference equations with constant coefficients produce Toeplitz matrices. The
equations donąŕt change as time goes forward (LTI : Linear Time Invariant). They donąŕt
change in space (LSI : Linear Shift Invariant).

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 with symbol A(θ) = −e−iθ + 2 − eiθ = 2 − 2 cos θ.
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Toeplitz Matrices : Basic Ideas

Some properties of this A
I A(θ) ≥ 0 tells us that A is symmetric positive semidefinite or definite.
I A(0) = 2 − 2 = 0 tells us that λmin(A) will approach zero as n increases.
I The finite Toeplitz matrix A is barely positive definite.
I The infinite Toeplitz matrix is singular.

The inverse of a Toeplitz matrix A is usually not Toeplitz.

Example 2.1

A−1 =

2 −1 0
−1 2 −1
0 −1 2


−1

=
1

4


3 2 1
2 4 2
1 2 3

 is not Toeplitz
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Toeplitz Matrices : Basic Ideas

Levinson Durbin recursion
Levinson found a way to use the Toeplitz pattern in a recursion, reducing the usual O(n3)

solution steps for Ax = b to O(n2). It is better than some superfast algorithms proposed
later for moderate n.
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Application

Now we’re going to expand the linear algebra to the convolution by using an example of
audio data analysis. Start by representing a fully connected layer in the form of a matrix.

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43



x1
x2
x3

 =

y1
y2
y3
y4


But in general, audio data is much longer.

Sample Rate
A commonly seen unit of sampling rate is Hz, which stands for Hertz and means "samples
per second". As an example, 48 kHz is 48,000 samples per second. Simply put, sample
rate is the digital conversion of the sound we usually hear.

The number of samples in the audio data equals the length of the audio and the
multiplication of the sample rate. Therefore, as such, the weighted matrix will grow.
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Application


w11 w12 w13 w14 · · · w1n

w21 w22 w23 w24 · · · w2n

w31 w32 w33 w34 · · · w3n

w41 w42 w43 w44 · · · w4n





x1
x2
x3
x4
...

xn


=


y1
y2
y3
y4


The above equation will be difficult to learn. But fortunately, there’s a way to make it simple.

Data locality
An object is directly influenced only by its immediate surroundings.

Data stationarity
The mean and variance of the time series data are constant.
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Application

By data locality, teh first row of our matrix becomes a kernel of size 3 denote as
a(1) =

[
a(1)1 a(1)2 a(1)3

]
.


a(1)1 a(1)2 a(1)3 0 · · · 0
w21 w22 w23 w24 · · · w2n

w31 w32 w33 w34 · · · w3n

w41 w42 w43 w44 · · · w4n





x1
x2
x3
x4
...

xn


=


y1
y2
y3
y4


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Application

And by data stationarity, use the kernel a(1) that we previously defined. We use this kernel
by placing it at each step each time, and at the same time, we get the following results:



a(1)1 a(1)2 a(1)3 0 0 0 0 · · · 0

0 a(1)1 a(1)2 a(1)3 0 0 0 · · · 0

0 0 a(1)1 a(1)2 a(1)3 0 0 · · · 0

0 0 0 a(1)1 a(1)2 a(1)3 0 · · · 0
...

...
. . .

. . .
. . .

...





x1
x2
x3
x4
...

xn


Repeated reuse of definite kernels is called weight sharing.
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Application

After this change, the remaining parameters are 3. Compared to a weighted matrix with a
parameter value of 12 earlier, the current number of parameters is very limited and we
would like to extend this.
By increasing the parameters, we can make convolution multiple layers using different
kernels, such as a(2) and a(3).
Given the first kernel a(1) and input vector x, the first entry in the output given by this layer
is a(1)1 x1 + a(1)2 x2 + a(1)3 x3. Therefore, the whole output vector looks like the following:

a(1)x[1 : 3]
a(1)x[2 : 3]
a(1)x[3 : 5]

...


The same matrix multiplication method can be applied on following convolutional layers
with other kernels to get similar results.
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Application

Now, we are going to explore Convolution as a ‘running scalar product’.

Figure 1: A visualization of the audio signal.
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Application

The audio signal x(t) is actually the sound played when turning off the Windows system.

Figure 2: Notes for the above audio signal.
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Application

If we use Fourier transform (FT) all the notes would come out together and it will be hard
to figure out the exact time and location of each pitch. Therefore, a localized FT is needed.
It is also known as spectrogram.

Figure 3: Audio signal and its spectrogram.
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Application

Convolution of the input signal with all the pitches can help extract all notes in the input
piece. The spectrograms of the original signal and the signal of the concatenated pitches
is shown in Figure 4 while the frequencies of the original signal. It is also known as
spectrogram.

Figure 4: Spectrogram of original signal (left) and Sepctrogram of the concatenation of pitches (right).
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Application

And the four pitches is shown in Figure 5.

Figure 5: First note of the melody.
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Application

Fig 6 along with the audio clips of the convolutions prove the effectiveness of the
convolutions in extracting the notes.

Figure 6: Convolution of four kernels.
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